Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    1997, Vol. 9 Issue (4) : 1-6,13     DOI: 10.6046/gtzyyg.1997.04.01
Applied Research |
THE APPLICATION OF MULTI-TEMPORAL RADARSAT DATA TO PADDY FIELD CLASSIFICATION IN ZHAOQING AREA, GUANGDONG PROVINCE, CHINA
Liu Hao1, Shao Yuan1, Wang Cuizheng1, Brian Brisco2, Gordon Staples3
1. Institute of Remote Sensing Application, Chinese Academy of Sciences, Beijing, 100101;
2. Canada Center for Remote Sensing, 588 Booth Street, Ottawa, Ontario, Canada K1A0Y7;
3. Radarsat International, 275 Slater Street,Ontario, Canada K1PSH9
Download: PDF(1537 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

It gets a good result, that the multi-temporal Radarsat data are applied to paddy Field Classification in Zhaoqing area, Guangdong province, China. The discrimination of paddy field can reach a high accuracy, and the rotation process in paddy field can also be inferred easily. This paper demonstrate the latest development in this experimental research. Emphasis has been placed on the potential of neural network classifier's application to SARimage processing and the optimum Radarsat data selection for paddy monitoring in the southern China.

Keywords InSAR      Flat-earth phase      Orbit data      Interferometric spectrum      Height elevation error     
Issue Date: 02 August 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
AI Bin
LI Xia
HU Shu-Qi
SHI Chang-Xi
MA Sheng-Meng
LIU Chong-Min
Cite this article:   
AI Bin,LI Xia,HU Shu-Qi, et al. THE APPLICATION OF MULTI-TEMPORAL RADARSAT DATA TO PADDY FIELD CLASSIFICATION IN ZHAOQING AREA, GUANGDONG PROVINCE, CHINA[J]. REMOTE SENSING FOR LAND & RESOURCES, 1997, 9(4): 1-6,13.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.1997.04.01     OR     https://www.gtzyyg.com/EN/Y1997/V9/I4/1


[1] Blown R. J. , Lmnte R. , Brisco B.,江平等译.Radarsat数据在农业和水文方面的应用潜力.星载SAR图像处理.北京:科学出版社,1996,96-112


[2] 黄德双.神经网络模式识别系统理论.北京:电子工业出版社.1996


[3] Ban Yifang, et al. Improving the Accuracy of Synthetic Aperture Radar Analysis for Agriculture Crop Classification.Canadaian Journal of Remote Sensing, 1995, 21(2) :158-163


[4] Clark C.,et al.Spectral Identification by Artificial Neural Network and Genetic Algorithm. INT. J. Remote Sensing,1995,16(12):2255-2275


[5] Wang D. , et al .A Line-!preserving Post-processing Technique for Maximum Likelihood Classification of SAR Image INT. J. Remote Sensing, 1995,16(21) :2081-2087


[6] Justin D. Paola and Robert A. Schowengerdt. Searching for Patterns in Remote sensing Networks. 1995 International Geoscience and Remote Sensing Symposium, IGARSS'95 Image Databases Using Neural,443-447


[7] Bruzaone L.,et al. An Experimental Canparison of Neural Networks for the Classification of Multisensor Remote Sensing Images. 1995 International Geoscience and Remote Sesnig Symposium, IGARSS' 95, 452-454


[8] Liu H. and Shao Y. . The Neural Net Classifier Applied to the G1obeSAR Data for Land Use Mapping. Proceedings of the Second Asia Regional GlobeSAR Workshop, Beijing, China, Oct. 9-12.1995,73-77

[1] YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 177-188.
[2] LI Mengmeng, FAN Xueting, CHEN Chao, LI Qiannan, YANG Jin. Monitoring and interpretation of land subsidence in mining areas in Xuzhou City during 2016—2018[J]. Remote Sensing for Natural Resources, 2021, 33(4): 43-54.
[3] SHI Min, GONG Huili, CHEN Beibei, GAO Mingliang, ZHANG Shunkang. Monitoring of land subsidence in Beijing-Tianjin-Hebei plain during 2016—2018 based on InSAR and Sentinel-1A data[J]. Remote Sensing for Natural Resources, 2021, 33(4): 55-63.
[4] SHA Yonglian, WANG Xiaowen, LIU Guoxiang, ZHANG Rui, ZHANG Bo. SBAS-InSAR-based monitoring and inversion of surface subsidence of the Shadunzi Coal Mine in Hami City, Xinjiang[J]. Remote Sensing for Natural Resources, 2021, 33(3): 194-201.
[5] ZHANG Teng, XIE Shuai, HUANG Bo, FAN Jinghui, CHEN Jianping, TONG Liqiang. Detection of active landslides in central Maoxian County using Sentinel-1 and ALOS-2 data[J]. Remote Sensing for Land & Resources, 2021, 33(2): 213-219.
[6] HE Haiying, CHEN Caifen, CHEN Fulong, TANG Panpan. Deformation monitoring along the landscape corridor of Zhangjiakou Ming Great Wall using Sentinel-1 SBAS-InSAR approach[J]. Remote Sensing for Land & Resources, 2021, 33(1): 205-213.
[7] YU Hairuo, GONG Huili, CHEN Beibei, ZHOU Chaofan. Emerging risks and the prospect of urban underground space security based on InSAR-GRACE satellite under the new hydrological background[J]. Remote Sensing for Land & Resources, 2020, 32(4): 16-22.
[8] ZHANG Ling, LIU Bin, GE Daqing, GUO Xiaofang. Detecting tiny differential deformation of Tangshan urban active fault using multi-source SAR data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 114-120.
[9] Mao ZHU, Tiyan SHEN, Song HUANG, Shujian BAI, Chunqin GE, Qiong HU. Research on applications of InSAR technology to the deformation monitoring of buildings along the subway[J]. Remote Sensing for Land & Resources, 2019, 31(2): 196-203.
[10] Zhenlin WANG, Mingsheng LIAO, Lu ZHANG, Heng LUO, Jie DONG. Detecting and characterizing deformations of the left bank slope near the Jinping hydropower station with time series Sentinel-1 data[J]. Remote Sensing for Land & Resources, 2019, 31(2): 204-209.
[11] Zechao BAI, Baocun WANG, Guowang JIN, Qing XU, Hongmin ZHANG, Hui LIU. Applicability analysis of ground deformation monitoring in mining area by Sentinel - 1A data[J]. Remote Sensing for Land & Resources, 2019, 31(2): 210-217.
[12] Nianqin WANG, Dejing QIAO, Xiyou FU. An analysis of the influence of filtering parameter on the performance of Goldstein InSAR interfergram filter[J]. Remote Sensing for Land & Resources, 2019, 31(1): 117-124.
[13] Dong WANG, Fengbing LAI, Mengyu CHEN, Shujiang CHEN, Tiecheng HUANG, Xiang JIA. Research on coseismic deformation in Ukraine River Valley of Tianshan Mountains based on InSAR technology[J]. Remote Sensing for Land & Resources, 2019, 31(1): 187-194.
[14] Juan XUE, Linfeng YU, Qinan LIN, Guang LIU, Huaguo HUANG. Using Sentinel-1 multi-temporal InSAR data to monitor the damage degree of shoot beetle in Yunnan pine forest[J]. Remote Sensing for Land & Resources, 2018, 30(4): 108-114.
[15] LIU Yilin, ZHANG Qin, HUANG Haijun, YANG Chengsheng, ZHAO Chaoying. Monitoring and analyzing large scale land subsidence over the mining area using small baseline subset InSAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 144-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech