1.Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China 2.University of Chinese Academy of Sciences, Beijing 100049, China
Evaluation the application potential of the new generation L-band sensor by ortho-rectifying of the PALSAR-2 image has an important significance. The error of orbital parameter in the rectification process will affect the final ortho-rectification precision. To tackle this problem, this paper proposes an ortho-rectification algorithm for PALSAR-2 image based on orbit parameters modulation and simplified calculation. Orbit parameters are modulated by registration of the simulate image and the real image. By using the modulated orbit parameters and simplified calculation of the range doppler(RD) model, ortho-rectification is performed. The method was applied to PALSAR-2 image and PALSAR image at the same time and it was compared with the PALSAR-2 ortho-rectification image without orbit parameters modulation. The result shows that the algorithm has strong operability and high geometric accuracy and that the new generation L-band sensor image’s rectification accuracy is higher, which further confirms that the new generation L-band sensor has better performance and greater application potential.
Yanyan LI,Ping TANG,Changmiao HU, et al. PALSAR-2 image ortho-rectification based on orbit parameters modulation[J]. Remote Sensing for Land & Resources,
2018, 30(2): 53-59.
Tab.1 Brief introduction of the images in study area
Fig.3 PALSAR-2 image
Fig.4 DEM image
Fig.5 PALSAR-2 simulate image
Fig.6 PALSAR-2 ortho-rectification image
Fig.7 PALSAR rectification image
Fig.8 PALSAR-2 ortho-rectification image without orbit parameters modulation
点号
实际坐标
PALSAR -2校正影像
未经轨道修正的PALSAR -2校正影像
校正坐标
坐标差
校正坐标
坐标差
x
y
x
y
Δx
Δy
x
y
Δx
Δy
1
301 470
3 920 022
301 461
3 920 021
9
1
301 459
3 920 028
11
6
2
299 655
3 921 460
299 649
3 921 451
6
9
299 647
3 921 451
8
9
3
297 900
3 904 394
297 898
3 904 392
2
2
297 890
3 904 382
10
12
4
289 693
3 931 157
289 686
3 931 150
7
7
289 686
3 931 141
7
16
5
289 290
3 931 063
289 293
3 931 065
3
2
289 299
3 931 066
9
3
6
288 781
3 930 926
288 776
3 930 929
5
3
288 766
3 930 914
15
12
7
288 387
3 930 908
288 385
3 930 899
2
9
288 383
3 930 899
4
9
8
283 306
3 929 923
283 293
3 929 922
13
1
283 293
3 929 910
13
13
9
283 238
3 930 228
283 234
3 930 221
4
7
283 234
3 930 221
4
7
10
281 628
3 928 258
281 626
3 928 266
2
8
281 620
3 928 266
8
8
11
277 290
3 909 780
277 283
3 909 787
7
7
277 272
3 909 787
18
7
12
274 895
3 934 615
274 889
3 934 618
6
3
274 889
3 934 625
6
10
13
269 652
3 932 515
269 653
3 932 514
1
1
269 659
3 932 503
7
12
14
267 860
3 927 380
267 852
3 927 384
8
4
267 845
3 927 384
15
4
15
267 434
3 924 644
267 437
3 924 652
3
8
267 437
3 924 652
3
8
Tab.2 Accuracy assessment of PALSAR -2 rectification images with orbit modulation and without orbit modulation(m)
[1]
Hatooka Y, Kankaku Y, Arikawa Y , et al. First result from ALOS-2 operation[M] //Xiong X X,Shimoda H.Earth Observing Missions and Sensors:Development,Implementation,and Characterization III.Beijing,China:SPIE, 2014.
[2]
Arikawa Y, Kankaku Y, Saruwatari H , et al.ALOS-2 launch and initial checkout result[C]//Proceedings of the SPIE Volume 9241,Sensors,Systems,and Next-Generation Satellites XVIII,SPIE Remote Sensing.Amsterdam,Netherlands:SPIE, 2014.
Liu Y Z, Li M H, Zhang L , et al. Interferometric coherence analysis of ALOS-2 PALSAR-2:In the upstream region of the Yellow River[J]. Geomatics and Spatial Information Technology, 2016,39(3):37-40,44.
[4]
敖祖锐 . 星载SAR影像模拟及其在正射校正中的应用研究[D]. 北京:首都师范大学, 2014.
[4]
Ao Z R . Simulation of Space-Borne SAR and Its Application in Ortho-Rectification[D]. Beijing:Capital Normal University, 2014.
Xu T S, Yue C R, Zhang W F . Orthographic calibration of space-borne ALOS PALSAR microwave remote sensing image in mountain area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(1):173-177.
Wang Q, Zeng Q M, Jiao J , et al. Orthorectification of high-resolution airborne SAR image based on DEM and the lookup table of RD model[J].Bulletin of Surveying and Mapping, 2013(11):10-13.
Chen J W, Zeng Q M, Jiao J , et al. Spaceborne SAR image geometric rectification method without ground control points using orbit parameters modulation[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(12):1434-1440.
[8]
Pan B, Liu L. Precise SAR satellite orbit parameters determination based on ground control points [C]//Proceedings of the 18th International Conference on Geoinformatics.Beijing,China:IEEE, 2010: 1-5.
Lu J, Guo K C, Lu H T . Analysis of R-D location precision in spaceborne SAR image[J]. Radar Science and Technology, 2009,7(2):102-106.
[10]
Becek K . Assessing global digital elevation models using the runway method:The advanced spaceborne thermal emission and reflection radiometer versus the shuttle radar topography mission case[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(8):4823-4831.
doi: 10.1109/TGRS.2013.2285187
url: http://ieeexplore.ieee.org/document/6651798/
[11]
陈尔学 . 星载合成孔径雷达影像正射校正方法研究[D]. 北京:中国林业科学研究院, 2004.
[11]
Chen E X . Study on Ortho-Rectification Methodology of Space-Borne Synthetic Aperture Radar Imagery[D]. Beijing:Chinese Academy of Forestry, 2004.
Shimada M . Ortho-rectification and slope correction of SAR data using DEM and its accuracy evaluation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010,3(4):657-671.
doi: 10.1109/JSTARS.2010.2072984
url: http://ieeexplore.ieee.org/document/5597959/
Zhang L Y, Zhang F . Geopositioning and geometric rectification of spaceborne SAR images[J]. Computer Engineering and Applications, 2015,51(18):175-179.