Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (4) : 1-7     DOI: 10.6046/gtzyyg.2020.04.01
|
Analysis of impact of open science on the construction of Global Earth Observation System of Systems
JING Guifei()
Research Institute of Frontier Science, Beihang University, Beijing 100191, China
Download: PDF(768 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Remote sensing application has become an indispensable support for a number of industries, and the development of remote sensing systems in various countries is surging. Trusted remote sensing information for supporting law enforcement applications has become a new requirement from users. Based on the Group on Earth Observations (GEO) advanced transformation of “open data” to “open science” facing digital economy at Canberra GEO Ministerial Summit in 2019, it is held that Earth Observation Systems need to study new interoperability mode to supervise the construction of knowledge hub, adapt to the requirements of digital economy for data quality, and improve the ability to support scientific decision-making. The unique advantages of remote sensing information have attracted attention and participation of large international digital technology enterprises. New technical route of remote sensing image processing supported by new generation of digital technology is discussed, the whole parameter processing should be carried out under the whole chain from acquisition to information according to the concept of remote sensing science so as to realize quantitative remote sensing, and the quality assurance system of inspection and certification to fulfill reliable remote sensing should be built. It is further held that the construction of GEOSS under open science needs to process remote sensing information concerning the whole chain using cloud computing and big data with the consideration of data quality and result reappearance to promote new interoperability among remote sensing systems so as to ensure that trusted remote sensing information will be promoted to reassure decision-makers.

Keywords Global Earth Observation System of Systems(GEOSS)      open science      remote sensing science      whole chain processing      interoperation of earth observation systems      trusted remote sensing     
:  TP79  
Issue Date: 23 December 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guifei JING
Cite this article:   
Guifei JING. Analysis of impact of open science on the construction of Global Earth Observation System of Systems[J]. Remote Sensing for Land & Resources, 2020, 32(4): 1-7.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.04.01     OR     https://www.gtzyyg.com/EN/Y2020/V32/I4/1
[1] 李素菊. 空间减灾国际合作机制(四):地球观测组织机制介绍[J]. 中国减灾, 2018(15):50-51.
[1] Li S J. International cooperation mechanism on space disaster reduction(four):Introduction of GEO mechanism[J]. Disaster Reduction in China, 2018(15):50-51.
[2] GEO strategic plan 2016—2025:Implementing GEOSS[OL]. http://www.earthobservations.org/.
url: http://www.earthobservations.org/
[3] Canberra declaration[OL]. http://www.earthobservations.org/.
url: http://www.earthobservations.org/
[4] Open science[OL]. https://en.unesco.org/science-sustainable-future/open-science.
url: https://en.unesco.org/science-sustainable-future/open-science
[5] 朝乐门. 数据科学[M]. 北京: 清华大学出版社, 2016.
[5] Chao L M. Data science[M]. Beijing: Tsinghua University Press, 2016.
[6] 宗威, 吴锋. 大数据时代下数据质量的挑战[J]. 西安交通大学学报(社会科学版), 2013,33(5):38-43.
[6] Zong W, Wu F. The challenge of data quality in the big data age[J]. Journal of Xi’an Jiaotong University (Social Sciences), 2013,33(5):38-43.
[7] 章昌平, 米加宁, 李大宇. 数据科学研究在社会科学中的应用前景[J]. 社会科学, 2018(9):78-88.
[7] Zhang C P, Mi J N, Li D Y. Research progress on data science and the prospect in social science[J]. Social Science, 2018(9):78-88.
[8] 赵新, 王战举, 屈鸿钧, 等. 我国遥感应用产业化中的若干问题探讨[J]. 卫星应用, 2017(10):39-44.
[8] Zhao X, Wang Z J, Qu H J, et al. Discussion on issues of industrialization of remote sensing applications in China[J]. Satellite Application, 2017(10):39-44.
[9] 郑浩. 高分辨率航空遥感系统产业化应用与思考[C]// 第五届高分辨率对地观测学术年会论文集, 2018:726-735.
[9] Zheng H. Industrial applications and considerations of high resolution aerospace remote sensing system[C]// Proceedings of the Fifth Annual Conference of High Resolution Earth Observations, 2018:726-735.
[10] 赵忠明, 高连如, 陈东, 等. 卫星遥感及图像处理平台发展[J]. 中国图象图形学报, 2019(12):46-58.
[10] Zhao Z M, Gao L R, Chen D, et al. Development of satellite remote sensing and image processing platform[J]. Journal of Image and Graphics, 2019(12):46-58.
[11] 王海燕, 朱建民, 卢海强. 我国陆地观测卫星遥感应用服务[J]. 卫星应用, 2020(1):35-38.
[11] Wang H Y, Zhu J M, Lu H Q. Remote sensing application service of Land Observation Satellite in China[J]. Satellite Application, 2020(1):35-38.
[12] 李小文. 遥感科学与定量遥感[J]. 科学观察, 2006,1(5):45.
[12] Li X W. Remote sensing science and quantitative remote ssensing[J]. Science Focus, 2006,1(5):45.
[13] 柳钦火, 阎广建, 焦子锑, 等. 发展几何光学遥感建模理论推动定量遥感科学前行:深切缅怀李小文院士[J]. 遥感学报, 2019(1):5-14.
[13] Liu Q H, Yan G J, Jiao Z D, et al. Geometric-optical remote sensing modeling to quantitative remote sensing theory and methodology development:In memory of academician Li Xiaowen[J]. Journal of Remote Sensing, 2019(1):5-14.
[14] 孙家抦. 遥感原理与应用(第三版)[M]. 武汉: 武汉大学出版社, 2013.
[14] Sun J B. Remote sensing theory and applications (third version)[M]. Wuhan: Wuhan University Press, 2013.
[15] GEOSS[OL]. http://www.earthobservations.org/geoss.php.
url: http://www.earthobservations.org/geoss.php
[16] 国家综合地球观测数据共享平台[OL]. http://www.chinageoss.cn/.
url: http://www.chinageoss.cn/
[16] National Integrated Earth Observation Data Sharing Platform[OL]. http://www.chinageoss.cn/.
url: http://www.chinageoss.cn/
[17] Bai Y, Di L, Wei Y. A taxonomy of geospatial services for global service discovery and interoperability[J]. Computer and Geosciences, 2009,35(4):783-790.
[18] GEO standards and interoperability[OL]. https://www.earthobservations.org/gci_sr.shtml.
url: https://www.earthobservations.org/gci_sr.shtml
[19] GEO Programme Board. GEO knowledge hub implementation plan (March 2020—March 2021)[R]. Geneva:GEO, 2020.
[1] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[2] REN Chaofeng, PU Yuchi, ZHANG Fuqiang. A method for extracting match pairs of UAV images considering geospatial information[J]. Remote Sensing for Natural Resources, 2022, 34(1): 85-92.
[3] ZANG Liri, YANG Shuwen, SHEN Shunfa, XUE Qing, QIN Xiaowei. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
[4] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] JIANG Na, CHEN Chao, HAN Haifeng. An optimization method of DEM resolution for land type statistical model of coastal zones[J]. Remote Sensing for Natural Resources, 2022, 34(1): 34-42.
[7] WU Fang, LI Yu, JIN Dingjian, LI Tianqi, GUO Hua, ZHANG Qijie. Application of 3D information extraction technology of ground obstacles in the flight trajectory planning of UAV airborne geophysical exploration[J]. Remote Sensing for Natural Resources, 2022, 34(1): 286-292.
[8] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[9] LIU Wen, WANG Meng, SONG Ban, YU Tianbin, HUANG Xichao, JIANG Yu, SUN Yujiang. Surveys and chain structure study of potential hazards of ice avalanches based on optical remote sensing technology: A case study of southeast Tibet[J]. Remote Sensing for Natural Resources, 2022, 34(1): 265-276.
[10] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[11] WU Yijie, KONG Xuesong. Simulation and development mode suggestions of the spatial pattern of “ecology-agriculture-construction” land in Jiangsu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 238-248.
[12] ZHANG Qinrui, ZHAO Liangjun, LIN Guojun, WAN Honglin. Ecological environment assessment of three-river confluence in Yibin City using improved remote sensing ecological index[J]. Remote Sensing for Natural Resources, 2022, 34(1): 230-237.
[13] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[14] SUN Yiming, ZHANG Baogang, WU Qizhong, LIU Aobo, GAO Chao, NIU Jing, HE Ping. Application of domestic low-cost micro-satellite images in urban bare land identification[J]. Remote Sensing for Natural Resources, 2022, 34(1): 189-197.
[15] ZHENG Xiucheng, ZHOU Bin, LEI Hui, HUANG Qiyu, YE Haolin. Extraction and spatio-temporal change analysis of the tidal flat in Cixi section of Hangzhou Bay based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 18-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech