Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (1) : 135-141     DOI: 10.6046/zrzyyg.2021088
|
A method for creating annual land cover data based on Google Earth Engine: A case study of the Yellow River basin
FANG Mengyang1(), LIU Xiaohuang2, KONG Fanquan1, LI Mingzhe1, PEI Xiaolong3
1. Haikou Marine Geological Survey Center, China Geological Survey, Haikou 570000,China
2. Natural Resources Comprehensive Survey Command Center, China Geological Survey, Beijing 100096,China
3. Langfang Natural Resources Comprehensive Survey Center, China Geological Survey, Langfang 065000,China
Download: PDF(4403 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The study on many years’ land cover plays a crucial role in promoting the high-quality development of the Yellow River basin. Meanwhile, high-frequency and high-precision land cover data are vital for land cover monitoring. This study took the basin’s geometric center that has been stable for many years to sample and quickly selected a set of sample points that can be used for annual image supervised classification. Then, cloudless images were screened out from nearly one thousand Landsat images on average of the Yellow River basin of each year from 2000 to 2020 and were spliced by year using Google Earth Engine. Then, the random forest classification method was used to conduct the supervised classification of the cloudless images, producing the annual land cover data of the Yellow River basin in the recent 20 years. Finally, the land cover data of 2010 of the basin were compared with well-known annual land cover data at home and abroad. The results are as follows. ① The selection method of sample points used in this study is reasonable and reliable, with a selection accuracy of more than 94.7%, meeting the requirements of sample accuracy for supervised classification. ② The overall accuracy of the annual land cover data created based on Google Earth Engine is 0.82±0.03, with an average Kappa coefficient of 0.82. The classification accuracy and the overall and local classification results are better than the MCD12Q1 and ESA-CCI datasets. ③ Using the method for creating annual land cover data using Google Earth Engine, the frequency and accuracy of large-scale land cover data can be considered at the same time to a certain extent.

Keywords Google Earth Engine      land cover data      Yellow River basin     
ZTFLH:  P962  
Issue Date: 14 March 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Mengyang FANG
Xiaohuang LIU
Fanquan KONG
Mingzhe LI
Xiaolong PEI
Cite this article:   
Mengyang FANG,Xiaohuang LIU,Fanquan KONG, et al. A method for creating annual land cover data based on Google Earth Engine: A case study of the Yellow River basin[J]. Remote Sensing for Natural Resources, 2022, 34(1): 135-141.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021088     OR     https://www.gtzyyg.com/EN/Y2022/V34/I1/135
Fig.1  Location of the Yellow River basin
Fig.2  Technical flow chart
CNLUCC分类系统 GlobeLand30数据集分类系统 MCD12Q1数据集
(IGBP分类系统)
ESA-CCI数据集
(LCCS分类系统)
1 耕地 10 耕地 12
14
农田
农田与自然植被镶嵌体
16
17
18
耕地
农田、树木和其他自然植被镶嵌体
农田、灌丛和草本植被镶嵌体
2 林地 20
40
林地
灌木地
1
2
3
4
5
6
7
常绿针叶林
常绿阔叶林
落叶针叶林
落叶阔叶林
混交林
郁闭灌木林
稀疏灌木林
1
2
3
4
5
6
9
10
11
12
常绿阔叶林
郁闭落叶阔叶林
稀疏落叶阔叶林
常绿针叶林
落叶针叶林
针阔混交林
林地和其他自然植被镶嵌体
有林火烧地
常绿灌丛(有/无稀疏树木层)
落叶灌丛(有/无稀疏树木层)
3 草地 30
70
草地
苔原
8
9
10
有林草地
稀树草原
草地
13
14
草本植被
稀疏草本植被或稀疏灌丛
4 水体 50
60
湿地
水体
11
17
永久湿地
水体
7
8
15
20
有林的规律性洪泛区,淡水
有林的规律性洪泛区,咸水
灌丛/草本植被覆盖的规律性洪泛区
水体(自然和人工)
5 建设用地 80 人造地表 13 城镇与建成区 22 人工表面和相关区域
6 未利用地 90
100
裸地
冰川和永久积雪
15
16
冰雪
裸地
19
21
荒地
冰雪(自然和人工)
Tab.1  Corresponding table of four classification systems
Fig.3  Samples distribution
土地类型 分类精度
用户精度 制图精度
林地 0.89±0.03 0.90±0.02
草地 0.80±0.04 0.80±0.03
耕地 0.80±0.03 0.81±0.04
水体 0.91±0.03 0.92±0.02
建设用地 0.85±0.04 0.83±0.02
未利用地 0.81±0.05 0.82±0.04
总体精度 0.82±0.03
Tab.2  Classification accuracy of land cover yearly data in the Yellow River basin based on GEE platform from 2000 to 2020
Fig.4-1  Land cover classification map of the Yellow River basin in 2010
Fig.4-2  Land cover classification map of the Yellow River basin in 2010
地类 本文方法 GlobeLand30 MCD12Q1 ESA-CCI
林地 11.38 9.94 10.65 11.47
草地 59.84 45.53 42.02 35.73
耕地 23.86 24.28 20.11 35.24
水体 1.18 0.95 8.94 2.94
建设用地 0.76 1.80 1.70 1.40
未利用地 2.98 17.50 16.58 13.21
Tab.3  Area proportion of four types of data products by regions(%)
地类 Google Earth历史影像 本文方法 GlobeLand30 MCD12Q1 ESA-CCI
林地
草地
耕地
水体
建设用地
未利用地
Tab.4  Comparison of four types of data products by regions
[1] Friedl M, Sulla-Menashe D. MCD12Q1 MODIS/Terra+Aqua land cover type yearly L3 Global 500 m SIN Grid V006[DB]. NASA EOSDIS Land Processes DAAC, 2019.
[2] Aurélie B. Global ESA CCI land cover classification map (1992—2015)[DB]. A Big Earth Data Platform for Three Poles, 2018.
[3] Friedl M A, McIver D K, Hodges J C F, et al. Global land cover mapping from MODIS:Algorithms and early results[J]. Remote Sensing of Environment, 2002, 83(1/2):287-302.
doi: 10.1016/S0034-4257(02)00078-0 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425702000780
[4] Tsendbazar N E, De Bruin S, Fritz S, et al. Spatial accuracy assessment and integration of global land cover datasets[J]. Remote Sensing, 2015, 7(12):15804-15821.
doi: 10.3390/rs71215804 url: http://www.mdpi.com/2072-4292/7/12/15804
[5] Chen J, Chen J, Liao A, et al. Remote sensing mapping of global land cover[M]. Beijing: Science Press, 2016.
[6] 徐新良, 刘纪远, 张树文, 等. 中国多时期土地利用土地覆被遥感监测数据集(CNLUCC)[Z]. 中国科学院资源环境科学数据中心数据注册与出版系统, 2018.
[6] Xu X L, Liu J Y, Zhang S W, et al. China multi-period land use land cover remote sensing monitoring data set(CNLUCC)[Z]. Data Registration and Publishing System of the Resource and Environmental Science Data Center of the Chinese Academy of Sciences, 2018.
[7] 宋宏利, 张晓楠. 国家尺度异源土地覆被遥感产品精度评价[J]. 自然资源遥感, 2018, 30(3):26-32.doi: 10.6046/gtzyyg.2018.03.04.
doi: 10.6046/gtzyyg.2018.03.04
[7] Song H L, Zhang X N. Precision validation of multi-sources land cover products derived from remote sensing[J]. Remote Sensing for Land and Resources, 2018, 30(3):26-32.doi: 10.6046/gtzyyg.2018.03.04.
doi: 10.6046/gtzyyg.2018.03.04
[8] Hu Y F, Hu Y. Land cover changes and their driving mechanisms in central Asia from 2001 to 2017 supported by Google Earth Engine[J]. Remote Sensing, 2019, 11(5):554.
doi: 10.3390/rs11050554 url: https://www.mdpi.com/2072-4292/11/5/554
[9] Johnson B A, Kotaro I. Integrating OpenStreetMap crowdsourced data and Landsat time-series imagery for rapid land use/land cover (LULC) mapping:Case study of the Laguna de Bay area of the Philippines[J]. Applied Geography, 2016, 67:140-149.
doi: 10.1016/j.apgeog.2015.12.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0143622815300321
[10] Manjunatha V, Nophea S, Rajendra P S, et al. Determination of vegetation thresholds for assessing land use and land use changes in Cambodia using the Google Earth Engine cloud-computing platform[J]. Remote Sensing, 2019, 11(13):1514.
doi: 10.3390/rs11131514 url: https://www.mdpi.com/2072-4292/11/13/1514
[11] 袁丽华, 蒋卫国, 申文明, 等. 2000—2010年黄河流域植被覆盖的时空变化[J]. 生态学报, 2013, 33(24):7798-7806.
[11] Yuan L H, Jiang W G, Shen W M, et al. The spatio-temporal variations of vegetation cover in the Yellow River basin from 2000 to 2010[J]. Acta Ecologica Sinica, 2013, 33(24):7798-7806.
[12] 杨胜天, 刘昌明, 孙睿. 近20年来黄河流域植被覆盖变化分析[J]. 地理学报, 2002, 57(6):679-684.
[12] Yang S T, Liu C M, Sun R. The vegetation cover over last 20 years in Yellow River basin[J]. Acta Geographica Sinica, 2002, 57(6):679-684.
[13] 张景华, 封志明, 姜鲁光. 土地利用/土地覆被分类系统研究进展[J]. 资源科学, 2011, 33(6):1195-1203.
[13] Zhang J H, Feng Z M, Jiang L G. Progress on studies of land use/land cover classification systems[J]. Resources Science, 2011, 33(6):1195-1203.
[14] 胡云锋, 商令杰, 张千力, 等. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4):573-583.
[14] Hu Y F, Shang L J, Zhang Q L, et al. Land change patterns and driving mechanism in Beijing since 1990 based on GEE platform[J]. Remote Sensing Technology and Application, 2018, 33(4):573-583.
[15] Rodriguez-Galiano V F, Chica-Olmo M, Abarca-Hernandez F, et al. Random forest classification of mediterranean land cover using multi-seasonal imagery and multi-seasonal texture[J]. Remote Sensing of Environment, 2012, 121:93-107.
doi: 10.1016/j.rse.2011.12.003 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425711004408
[16] Guo L, Chehata N, Clément M, et al. Relevance of airborne LiDAR and multispectral image data for urban scene classification using random forests[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(1):56-66.
doi: 10.1016/j.isprsjprs.2010.08.007 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271610000705
[1] HUA Yongchun, CHEN Jiahao, SUN Xiaotian, PEI Zhiyong. Analysis of landscape ecology risk of the Yellow River basin in Inner Mongolia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 220-229.
[2] YU Sen, JIA Mingming, CHEN Gao, LU Yingying, LI Yi, ZHANG Bochun, LU Chunyan, LI Huiying. A study of the disturbance to mangrove forests in Dongzhaigang, Hainan based on LandTrendr[J]. Remote Sensing for Natural Resources, 2023, 35(2): 42-49.
[3] ZHU Lin, HUANG Yuling, YANG Gang, SUN Weiwei, CHEN Chao, HUANG Ke. Information extraction and spatio-temporal evolution analysis of the coastline in Hangzhou Bay based on Google Earth Engine and remote sensing technology[J]. Remote Sensing for Natural Resources, 2023, 35(2): 50-60.
[4] CHEN Huixin, CHEN Chao, ZHANG Zili, WANG Liyan, LIANG Jintao. A remote sensing information extraction method for intertidal zones based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(4): 60-67.
[5] LI Yi, CHENG Lina, LU Yingying, ZHANG Bochun, YU Sen, JIA Mingming. A study on the changes in coastal tidal flats in the Laizhou Bay based on MSIC and OTSU[J]. Remote Sensing for Natural Resources, 2022, 34(4): 68-75.
[6] ZHU Qi, GUO Huadong, ZHANG Lu, LIANG Dong, LIU Xuting, WAN Xiangxing. Classification of tropical natural forests in Hainan Island based on multi-temporal Landsat8 remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2): 215-223.
[7] LUO Hongjian, MING Dongping, XU Lu. Time series calculation of remote sensing ecological index based on GEE[J]. Remote Sensing for Natural Resources, 2022, 34(2): 271-277.
[8] ZHENG Xiucheng, ZHOU Bin, LEI Hui, HUANG Qiyu, YE Haolin. Extraction and spatio-temporal change analysis of the tidal flat in Cixi section of Hangzhou Bay based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 18-26.
[9] YAO Jinxi, ZHANG Zhi, ZHANG Kun. An analysis of the characteristics, causes, and trends of spatio-temporal changes in vegetation in the Nuomuhong alluvial fan based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 249-256.
[10] LAI Peiyu, HUANG Jing, HAN Xujun, MA Mingguo. An analysis of impacts from water impoundment in Three Gorges Dam Project on surface water in Chongqing area base on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2021, 33(4): 227-234.
[11] YANG Wenna, ZHOU Liang, SUN Dongqi. Ecological vulnerability assessment of the Yellow River basin based on partition-integration concept[J]. Remote Sensing for Natural Resources, 2021, 33(3): 211-218.
[12] MOU Xiaoli, LI He, HUANG Chong, LIU Qingsheng, LIU Gaohuan. Application progress of Google Earth Engine in land use and land cover remote sensing information extraction[J]. Remote Sensing for Land & Resources, 2021, 33(2): 1-10.
[13] CHEN Hong, GUO Zhaocheng, HE Peng. Spatial and temporal change characteristics of vegetation coverage in Erhai Lake basin during 1988—2018[J]. Remote Sensing for Land & Resources, 2021, 33(2): 116-123.
[14] YE Wantong, CHEN Yihong, LU Yinhao, Wu Penghai. Spatio-temporal variation of land surface temperature and land cover responses in different seasons in Shengjin Lake wetland during 2000—2019 based on Google Earth Engine[J]. Remote Sensing for Land & Resources, 2021, 33(2): 228-236.
[15] TAN Shiteng, WANG Jicheng, XU Zhu, GONG Xunqiang. Upscaling approach to land cover based on priority and semantic proximity rules[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 50-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech