Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2016, Vol. 28 Issue (1) : 50-56     DOI: 10.6046/gtzyyg.2016.01.08
Technology and Methodology |
Upscaling approach to land cover based on priority and semantic proximity rules
TAN Shiteng1,2, WANG Jicheng1, XU Zhu1, GONG Xunqiang1,2
1. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China;
2. Jiangxi Province Key Lab for Digital Land, East China Institute of Technology, Nanchang 330013, China
Download: PDF(11353 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

The upscaling methods for land cover classification data are still based on mode number selection or principle proportion choice; nevertheless, blocked at multiple modes, map information will be largely distorted under randomly choice. In order to maintain spatial information before and after generalization, this paper introduces land cover priority guidelines and semantic proximity norms to the upscaling method. A new upscaling method can be obtained by adding both rules to the aggregation processing. Firstly, through setting land cover priority guidelines and semantic proximity norms, the output category at the corresponding spatial location can be calculated on the coarse scale. The results show that, based on the majority aggregation method, and by adding the priority of the neighboring and semantic rules, the consistency of the spatial distribution of the feature can be better maintained after generalization, and the similarity of original maps is relatively high.

Keywords Liaodong Bay      object-oriented      coastline      land use     
:  TP79  
Issue Date: 27 November 2015
E-mail this article
E-mail Alert
Articles by authors
YANG Changkun
LIU Zhaoqin
WANG Chongchang
Cite this article:   
YANG Changkun,LIU Zhaoqin,WANG Chongchang, et al. Upscaling approach to land cover based on priority and semantic proximity rules[J]. REMOTE SENSING FOR LAND & RESOURCES, 2016, 28(1): 50-56.
URL:     OR

[1] Raffy M.Change of scale theory:A capital challenge for space observation of earth[J].International Journal of Remote Sensing,1994,15(12):2353-2357.

[2] Robinson W S.Ecological correlations and the behavior of individuals[J].American Sociological Review,1950,15(3):351-357.

[3] 俞乐,王杰,李雪草,等.基于多源数据集成的多分辨率全球地表覆盖制图[J].中国科学:地球科学,2014,44(8):1646-1660. Yu L,Wang J,Li X C,et al.A multi-resolution global land cover dataset through multisource data aggregation[J].Science China Earth Sciences,2014,57(10):2317-2329.

[4] 陈佑启,Verburg P H.中国土地利用/土地覆盖的多尺度空间分布特征分析[J].地理科学,2000,20(3):197-202. Chen Y Q,Verburg P H.Multi-scale spatial characterization of land use/land cover in China[J].Scientia Geographica Sinica,2000,20(3):197-202.

[5] 陈军,陈晋,宫鹏,等.全球地表覆盖高分辨率遥感制图[J].地理信息世界,2011,9(2):12-14. Chen J,Chen J,Gong P,et al.Higher resolution global land cover mapping[J].Geomatics World,2011,9(2):12-14.

[6] 杨叶涛,王迎迎,曾又枝.基于面向对象的高分遥感景观格局提取方法[J].国土资源遥感,2014,26(4):46-50.doi:10.6046/gtzyyg.2014.04.08. Yang Y T,Wang Y Y,Zeng Y Z.Object-based high spatial resolution imagery analysis for landscape pattern extraction[J].Remote Sensing for Land and Resources,2014,26(4):46-50.doi:10.6046/gtzyyg.2014.04.08.

[7] Atkinson P M,Aplin P.Spatial variation in land cover and choice of spatial resolution for remote sensing[J].International Journal of Remote Sensing,2004,25(18):3687-3702.

[8] Zhu C Q,Shi W Z,Wan G.Reducing remote sensing image and simplifying DEM data by the multi-band wavelet[J].International Journal of Remote Sensing,2002,23(3):525-536.

[9] 岳天祥,刘纪远.第四代地理信息系统研究中的尺度转换数字模型[J].中国图象图形学报,2001,6(9):907-911. Yue T X,Liu J Y.The digital model for transforming information at various scales[J]. Journal of Image and Graphics,2001,6(9):907-911.

[10] 刘学军,王彦芳,晋蓓.利用点扩散函数进行DEM尺度转换[J].武汉大学学报:信息科学版,2009,34(12):1458-1462. Liu X J,Wang Y F,Jin B.A upscaling method of digital elevation model with point spread function[J].Geomatics and Information Science of Wuhan University,2009,34(12):1458-1462.

[11] 杨勤科,Jupp D,郭伟玲,等.基于滤波方法的DEM尺度变换方法研究[J].水土保持通报,2008,28(6):58-62. Yang Q K,Jupp D,Guo W L,et al.Genaralizing the fine resolution DEMs with filtering method[J].Bulletin of Soil and Water Conservation,2008,28(6):58-62.

[12] McMaster R B,Monmonier M.A conceptual framework for quantitative and qualitative raster-mode generation[C]//Proceedings of GIS/LIS'89.Orlando,FL,1989:390-403.

[13] Nunes A,Caetano M R,Santos T G.Rule-based generalization of satellite-derived raster thematic maps[C]//Proc.SPIE 4886,Remote Sensing for Environmental Monitoring,GIS Applications and Geology II.Crete,Greece:SPIE,1999:289-297.

[14] 艾廷华,杨帆,李精忠.第二次土地资源调查数据建库中的土地利用图综合缩编[J].武汉大学学报:信息科学版,2010,35(8):887-891. Ai T H,Yang F,Li J Z.Land-use data generalization for the database construction of the second land resource survey[J].Geomatics and Information Science of Wuhan University,2010,35(8):887-891.

[15] 刘耀林,李红梅,杨淳惠.基于本体的土地利用数据综合研究[J].武汉大学学报:信息科学版,2010,35(8):883-886. Liu Y L,Li H M,Yang C H.Ontology based land use data generalization[J].Geomatics and Information Science of Wuhan University,2010,35(8):883-886.

[16] 艾廷华,刘耀林.土地利用数据综合中的聚合与融合[J].武汉大学学报:信息科学版,2002,27(5):486-492. Ai T H,Liu Y L.Aggregation and amalgamation in land-use data generalization[J].Geomatics and Information Science of Wuhan University,2002,27(5):486-492.

[17] Hagen A.Fuzzy set approach to assessing similarity of categorical maps[J].International Journal of Geographical Information Science,2003,17(3):235-249.

[18] Monmonier M S.Raster-mode area generalization for land use and land cover maps[J].Cartographica,1983,20(4):65-91.

[1] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[2] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[3] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[4] WU Jiang, LIU Chun, YING Shen, YU Ting. Spatial delineation methods of urban areas[J]. Remote Sensing for Natural Resources, 2021, 33(4): 89-97.
[5] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[6] XIAO Dongsheng, LIAN Hong. Population spatialization based on geographically weighted regression model considering spatial stability of parameters[J]. Remote Sensing for Natural Resources, 2021, 33(3): 164-172.
[7] DENG Xiaojin, JING Changqing, GUO Wenzhang, Yan Yujiang, CHEN Chen. Surface albedos of different land use types in the Junggar Basin[J]. Remote Sensing for Natural Resources, 2021, 33(3): 173-183.
[8] WANG Qingchuan, XI Yantao, LIU Xinran, ZHOU Wen, XU Xinran. Spatial-temporal response of ecological service value to land use change: A case study of Xuzhou City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 219-228.
[9] SONG Qi, FENG Chunhui, GAO Qi, WANG Mingyue, WU Jialin, PENG Jie. Change of cultivated land and its driving factors in Alar reclamation area in the past thirty years[J]. Remote Sensing for Land & Resources, 2021, 33(2): 202-212.
[10] CHEN Chao, CHEN Huixin, CHEN Dong, ZHANG Zili, ZHANG Xufeng, ZHUANG Yue, CHU Yanli, CHEN Jianyu, ZHENG Hong. Coastline extraction and spatial-temporal variations using remote sensing technology in Zhoushan Islands[J]. Remote Sensing for Land & Resources, 2021, 33(2): 141-152.
[11] HU Suliyang, LI Hui, GU Yansheng, HUANG Xianyu, ZHANG Zhiqi, WANG Yingchun. An analysis of land use changes and driving forces of Dajiuhu wetland in Shennongjia based on high resolution remote sensing images: Constraints from the multi-source and long-term remote sensing information[J]. Remote Sensing for Land & Resources, 2021, 33(1): 221-230.
[12] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[13] WANG Dejun, JIANG Qigang, LI Yuanhua, GUAN Haitao, ZHAO Pengfei, XI Jing. Land use classification of farming areas based on time series Sentinel-2A/B data and random forest algorithm[J]. Remote Sensing for Land & Resources, 2020, 32(4): 236-243.
[14] GAO Wenlong, SU Tengfei, ZHANG Shengwei, DU Yinlong, LUO Meng. Classification of objects and LUCC dynamic monitoring in mining area: A case study of Hailiutu watershed[J]. Remote Sensing for Land & Resources, 2020, 32(3): 232-239.
[15] Haigang SHI, Chunli LIANG, Jianyong ZHANG, Chunlei ZHANG, Xu CHENG. Remote sensing survey of the influence of coastline changes on the thermal discharge in the vicinity of Tianwan Nuclear Power Station[J]. Remote Sensing for Land & Resources, 2020, 32(2): 196-203.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech