Please wait a minute...
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (1) : 15-26     DOI: 10.6046/zrzyyg.2022009
Recent progress in chromaticity remote sensing of inland and nearshore water bodies
LI Kailin(), LIAO Kuo(), DANG Haofei
Fujian Meteorological Institute, Fuzhou 350007, China
Download: PDF(1092 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Water color represents the most intuitive visible perception of the color of water bodies that is jointly affected by substances such as suspended particulate matter, chlorophyll, and soluble organic matter. Water color is a water environmental parameter with a long history and plays a critical role in research on the ecosystem of inland and nearshore water bodies. With the progress made in colorimetric research, as well as hyperspectral imaging and satellite remote sensing techniques, the colorimetric method of water color has developed. This study systematically reviewed the colorimetric research progress of inland and nearshore water bodies and elaborated on the theories and practical applications of the colorimetric method from the angles of apparent optical properties (AOP) and inherent optical properties (IOP). Moreover, it presented the colorimetric processing method of satellite remote sensing data. The colorimetric method is a technical method for the quantitative expression of water color. It is also an important branch of water color research and an extension and supplement to the study of water color components, with a broad application prospect. To further improve the application of the colorimetric methods in inland and nearshore water bodies, it is necessary to enhance the construction of bio-optical datasets of water bodies in the future. Moreover, colorimetric studies should be conducted in two dimensions, namely AOP and IOP, and it is necessary to intensify research on domestic satellite-based colorimetric methods and increase the types of relevant water color products.

Keywords chromaticity      FU      water color component      satellite remote sensing     
ZTFLH:  TP79  
Issue Date: 20 March 2023
E-mail this article
E-mail Alert
Articles by authors
Kailin LI
Haofei DANG
Cite this article:   
Kailin LI,Kuo LIAO,Haofei DANG. Recent progress in chromaticity remote sensing of inland and nearshore water bodies[J]. Remote Sensing for Natural Resources, 2023, 35(1): 15-26.
URL:     OR
Fig.1  CIE1931 standard chromaticity system chromaticity
Fig.2  A chromaticity diagram showing the hue colour angle of the FU scale colours
Fig.3  Contribution of a small part of the spectrum, lying between bands b1 and b2, to the tristimulus values
[1] Wernand M R, Novoa S, van der Woerd H, et al. A centuries-long history of participatory science in optical oceanography:From observation to interpretation of natural water colouring[J]. History of Oceanography Yearbook, 2014, 19(20):61-90.
[2] Wernand M R. Poseidon’s paintbox:Historical archives of ocean colour in global-change perspective[D]. Utrecht: Utrecht University, 2011.
[3] Wernand M R, van der Woerd H J. Spectral analysis of the Forel-Ule ocean colour comparator scale[J]. Journal of the European Optical Society-Rapid Publications, 2010, 5(10014S):1-7.
[4] Wernand M R, Hommersom A, van der Woerd H J. MERIS-based ocean colour classification with the discrete Forel-Ule scale[J]. Ocean Science, 2013, 9(3):477-487.
doi: 10.5194/os-9-477-2013 url:
[5] Wernand M R, Woerd H J, Gieskes W C. Trends in ocean colour and chlorophyll concentration from 1889 to present[J]. PLOS ONE, 2013, 8(6):1-20.
[6] Arthur D B. A critical review of the development of the CIE1931 RGB color-matching functions[J]. Color Research and Application, 2004, 29(4),267-272.
doi: 10.1002/(ISSN)1520-6378 url:
[7] 中国计量科学研究院. GB/T3977—2008.颜色的表示方法[S]. 北京: 中国标准出版社, 2008.
[7] National Institute of Metrology. GB/T3977—2008[S]. Beijing: China Standards Publishing House, 2008.
[8] 贾婉丽. Photoshop中的色彩空间转换[D]. 西安: 西安理工大学, 2002.
[8] Jia W L. Color conversions in Photoshop[D]. Xi’an: Xi’an University of Technology, 2022.
[9] 唐军武, 陈清莲, 谭世祥, 等. 海洋光谱测量与数据分析处理方法[J]. 海洋通报, 1998, 17(1):71-79.
[9] Tang J W, Chen Q L, Tang S X, et al. Method of oceanic spectral data measurement and analysis[J]. Marine Science Bulletin, 1998, 17(1):71-79.
[10] 唐军武, 田国良, 汪小勇, 等. 水体光谱测量与分析Ⅰ:水面以上测量法[J]. 遥感学报, 2004, 8(1):37-44.
[10] Tang J W, Tian G L, Wang X Y, et al. The methods of water spectra measurement and analysis Ⅰ:Above-water method[J]. Journal of Remote Sensing, 2004, 8(1):37-44.
[11] Woerd H J, Wernand M R. True colour classification of natural waters with medium-spectral resolution satellites:SeaWiFS,MODIS,MERIS and OLCI[J]. Sensors, 2015, 15(10):25663-25680.
doi: 10.3390/s151025663 url:
[12] Woerd H J, Wernand M R. Hue-angle product for low to medium spatial resolution optical satellite sensors[J]. Remote Sensing, 2018, 10(2):180-198.
doi: 10.3390/rs10020180 url:
[13] Novoa S, Wernand M R, van der Woerd H J. The Forel-Ule scale revisited spectrally:Preparation protocol,transmission measurements and chromaticity[J]. Journal of the European Optical Society-Rapid publications, 2013(13057):1-8.
[14] Pitarch J, Bellacicco M, Marullo S, et al. Global maps of Forel-Ule index,hue angle and Secchi disk depth derived from twenty-one years of monthly ESA-OC-CCI data[J]. Earth System Science Data Discussions, 2020(13):1-17.
[15] Stomp M, Huisman J, Stal L J, et al. Colorful niches of phototrophic microorganisms shaped by vibrations of the water molecule[J]. The ISME Journal, 2007, 1(4):271-282.
doi: 10.1038/ismej.2007.59
[16] Holtrop T, Huisman J, Stomp M, et al. Vibrational modes of water predict spectral niches for photosynthesis in lakes and oceans[J]. Nature Ecology and Evolution, 2021, 5(1):55-66.
doi: 10.1038/s41559-020-01330-x pmid: 33168993
[17] Haverkamp T H A. Shades of red and green:The colorful diversity and ecology of picocyanobacteria in the Baltic Sea[D]. Amsterdam: Royal Netherlands Academy of Arts and Sciences, 2008.
[18] Rueffler C, van Dooren T J M, Leimar O, et al. Disruptive selection and then what?[J]. Trends in Ecology and Evolution, 2006, 21(5):238-245.
pmid: 16697909
[19] Smith R C, Goldman T. Optical properties and color of Lake Tahoe and crater lake[J]. Limnology and Oceanography, 1973, 18(2):189-199.
doi: 10.4319/lo.1973.18.2.0189 url:
[20] Alfoldi T T, Munday J C. Water quality analysis by digital chromaticity mapping of Landsat data[J]. Canadian Journal of Remote Sensing, 1978, 4(2):108-126.
doi: 10.1080/07038992.1978.10854974 url:
[21] Jaquet J, Zand B. Colour analysis of inland waters using Landsat TM data[J]. European Space Agency Monographs, 1989, 1102(11):57-67
[22] Sovdat B, Kadunc M, Batic M, et al. Natural color representation of Sentinel-2 data[J]. Remote Sensing of Environment, 2019(255):392-402.
[23] Jolliff J K, Lewis M D, Ladner S, et al. Observing the ocean submesoscale with enhanced-color GOES-ABI visible band data[J]. Sensors, 2019, 19(3900):1-23.
doi: 10.3390/s19010001 url:
[24] Novoa S, Wernand M, van der Woerd H J. WACODI:A generic algorithm to derive the intrinsic color of natural waters from digital images[J]. Limnology and Oceanography:Methods, 2015, 13(12):697-711.
doi: 10.1002/lom3.v13.12 url:
[25] Novoa S, Wernand M R, van der Woerd H J. The modern Forel-Ule scale:A “Do-it-yourself” colour comparator for water monitoring[J]. Journal of the European Optical Society-Rapid Publications, 2014, 9(14025):1-10.
[26] Busch J A, Price I, Jeansou E, et al. Citizens and satellites:Assessment of phytoplankton dynamics in a NW Mediterranean aquaculture zone[J]. International Journal of Applied Earth Observation and Geoinformation, 2016(47):40-49.
[27] Busch J A, Bardaji R, Ceccaroni L, et al. Citizen bio-optical observations from coast-and ocean and their compatibility with ocean colour satellite measurements[J]. Remote Sensing, 2016, 8(11):879.
doi: 10.3390/rs8110879 url:
[28] Malthus T J, Ohmsen R, Woerd H J. An evaluation of citizen science smartphone APPs for inland water quality assessment[J]. Remote Sensing, 2020, 12(1578):1-20.
doi: 10.3390/rs12010001 url:
[29] 段洪涛, 罗菊花, 曹志刚, 等. 流域水环境遥感研究进展与思考[J]. 地理科学进展, 2019, 38(8):1182-1195.
doi: 10.18306/dlkxjz.2019.08.007
[29] Duan H T, Luo J H, Cao Z G, et al. Progress in remote sensing of aquatic environments at the watershed scale[J]. Progress in Geography, 2019, 38(8):1182-1195.
doi: 10.18306/dlkxjz.2019.08.007
[30] 段洪涛, 曹志刚, 沈明, 等. 湖泊遥感研究进展与展望[J]. 遥感学报, 26(1):3-18.
[30] Duan H T, Cao Z G, Shen M, et al. Review of lake remote sensing research[J]. National Remote Sensing Bulletin, 2019, 26(1):3-18.
[31] Garaba S P, Friedrichs A, Voß D, et al. Classifying natural waters with the Forel-Ule colour index system:Results,applications,correlations and crowdsourcing[J]. International Journal of Environmental Research and Public Health, 2015, 12(12):16096-16109.
doi: 10.3390/ijerph121215044 url:
[32] Garaba S P, Voß D, Zielinski O. Physical,bio-optical state and correlations in North-Western European Shelf Seas[J]. Remote Sensing, 2014, 6(6):5042-5066.
doi: 10.3390/rs6065042 url:
[33] Woerd H J, Wernand M R, Peters M et al. True color analysis of natural waters with SeaWiFS,MODIS,MERIS and OLCI by SNAP[C]// Ocean Optics Conference, 2016.
[34] Pitarch J, van der Woerd H J, Brewin R J W, et al. Optical properties of Forel-Ule water types deduced from 15 years of global satellite ocean color observations[J]. Remote Sensing of Environment, 2019(231):1-16.
[35] Petus C, Waterhouse J, Lewis S, et al. A flood of information:Using Sentinel-3 water colour products to assure continuity in the monitoring of water quality trends in the Great Barrier Reef (Australia)[J]. Journal of Environmental Management, 2019(248):1-20.
[36] Nie Y, Guo J, Sun B, et al. An evaluation of apparent color of seawater based on the in-situ and satellite-derived Forel-Ule color scale[J]. Estuarine,Coastal and Shelf Science, 2020(246):1-10.
[37] Sung T, Kim Y J, Choi H, et al. Spatial downscaling of ocean colour-climate change initiative (OC-CCI) Forel-Ule index using GOCI satellite image and machine learning technique[J]. Korean Journal of Remote Sensing, 2021, 37(5-1):959-974.
[38] Zhan J, Zhang D J, Zhou G Q, et al. MODIS-based research on Secchi disk depth using an improved Semianalytical algorithm in the Yellow Sea[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021(14):5964-5972.
[39] Li M J, Sun Y H, Li X J et al. An improved eutrophication assessment algorithm of estuaries and coastal waters in Liaodong Bay[J]. Remote Sensing, 2021, 13(19):3866-3884.
doi: 10.3390/rs13193866 url:
[40] Wang S, Li J, Shen Q, et al. MODIS-based radiometric color extraction and classification of inland water with the Forel-Ule scale:A case study of Lake Taihu[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 8(2):907-918.
doi: 10.1109/JSTARS.4609443 url:
[41] Li J, Wang S, Wu Y, et al. MODIS observations of water color of the largest 10 lakes in China between 2000 and 2012[J]. International Journal of Digital Earth, 2016, 9(8):788-805.
doi: 10.1080/17538947.2016.1139637 url:
[42] Wang S, Li J, Zhang B, et al. Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index[J]. Remote Sensing of Environment, 2018(217):444-460.
[43] 王胜蕾. 基于水色指数的大范围长时序湖库水质遥感监测研究[D]. 北京: 中国科学院大学, 2018.
[43] Wang S L. Large-scale and long-time water quality remote sensing monitoring over lakes based on water color index[D]. Beijing: University of Chinese Academy of Sciences, 2018.
[44] Lehmann M K, Nguyen U, Allan M, et al. Colour classification of 1 486 lakes across a wide range of optical water types[J]. Remote Sensing, 2018, 10(8):1273.
doi: 10.3390/rs10081273 url:
[45] Jafar S M, Bowers D G, Griffiths J W. Remote sensing observations of ocean colour using the traditional Forel-Ule scale[J]. Estuarine,Coastal and Shelf Science, 2018(215):52-58.
[46] Wang S, Li J, Zhang B, et al. Changes of water clarity in large lakes and reservoirs across China observed from long-term MODIS[J]. Remote Sensing of Environment, 2020(247):1-17.
[47] Chen Q, Huang M, Tang X. Eutrophication assessment of seasonal urban lakes in China Yangtze River basin using Landsat8-derived Forel-Ule index:A six-year (2013—2018) observation[J]. Science of the Total Environment, 2020(745):135392-135392.
[48] 许杨. 基于Landsat的长江中下游流域湖泊水体颜色长时序变化研究[D]. 武汉: 武汉大学, 2020.
[48] Xu Y. Study on the long-term change of lacustrine water color in the middle and lower basins of the Yangtze river based on Landsat datasets[D]. Wuhan: Wuhan University, 2020.
[49] 许杨, 王野, 陆建忠, 等. 基于FUI模型的柬埔寨洞里萨湖水体颜色研究[J]. 华中师范大学学报(自然科学版), 2020, 54(3):454-462.
[49] Xu Y, Wang Y, Lu J Z, et al. Study on water color of Tonle Sap Lake in Cambodia based on FUI model[J]. Journal of Central China Normal University(Natural Science), 2020, 54(3):454-462.
[50] 王野. 基于多源遥感数据的洞里萨湖水环境长时序动态过程研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[50] Wang Y. Research on long-time dynamic process of Tonle Sap Lake water environment based on multi-source remote sensing data[D]. Harbin: Harbin Institute of Technology, 2020.
[51] 曹畅, 王胜蕾, 李俊生, 等. 基于MODIS数据的全国144个重点湖库营养状态监测:以2018年夏季为例[J]. 湖泊科学, 2018, 33(2):405-413.
[51] Cao C, Wang S L, Li J S, et al. MODIS-based monitoring of spatial distribution of trophic status in 144 key lakes and reservoirs of China in summer of 2018[J]. Journal of Lake Sciences, 2018, 33(2):405-413.
doi: 10.18307/2021.0203 url:
[52] 姜倩. 卫星遥感在湖库水质监测中的有效性评价方法研究——以GF-1号卫星为例[D]. 兰州: 兰州交通大学, 2020.
[52] Jiang Q. Study on the effectiveness evaluation method of satellite remote sensing in the monitoring of lake and reservoir water quality:Take GF-1 satellite as an example[D]. Lanzhou: Lanzhou Jiaotong University, 2020.
[53] 温爽, 王桥, 李云梅, 等. 基于高分影像的城市黑臭水体遥感识别:以南京为例[J]. 环境科学, 2018, 39(1):57-67.
[53] Wen S, Wang J, Li Y M, et al. Remote sensing identification of urban black-odor water bodies based on high-resolution images:A case study in Nanjing[J]. Environmental Science, 2018, 39(1):57-67.
doi: 10.1021/es048902d url:
[54] 杨子谦, 刘怀庆, 吕恒, 等. 基于高分影像的城市水体遥感综合分级方法[J]. 环境科学, 2021, 42(5):2213-2222.
[54] Yang Z Q, Liu H Q, Lyu H, et al. A comprehensive classification method of urban water by remote sensing based on high-resolution images[J]. Environmental Science, 2021, 42(5):2213-2222.
[55] Zhao Y, Shen Q, Wang Q, et al. Recognition of water colour anomaly by using hue angle and Sentinel 2 image[J]. Remote Sensing, 2020, 12(4):716-737.
doi: 10.3390/rs12040716 url:
[56] Sathyendranath S, Brewin B, Mueller D, et al. Ocean colour climate change initiative:Approach and initial results[C]// 2012 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2012:2024-2027.
[57] Jackson T, Chuprin A, Sathyendranath S, et al. Ocean colour climate change initiative (OC_CCI)-interim phase[R]. Plymouth: Plymouth Marine Laboratory, 2020.
[58] 张兵, 李俊生, 申茜, 等. 长时序大范围内陆水体光学遥感研究进展[J]. 遥感学报, 2021, 25(1):37-52.
[58] Zhang B, Li J S, Shen Q, et al. Recent research progress on long time series and large scale optical remote sensing of inland water[J]. National Remote Sensing Bulletin, 2021, 25(1):37-52.
[59] Wang S, Li J, Zhang W, et al. A dataset of remote-sensed Forel-Ule index for global inland waters during 2000—2018[J]. Scientific Data, 2021, 8(1):1-10.
doi: 10.1038/s41597-020-00786-7
[60] Boyce D G, Lewis M, Worm B. Integrating global chlorophyll data from 1890 to 2010[J]. Limnology and Oceanography:Methods, 2012(10):840-852.
[61] Dutkiewicz S, Hickman A E, Jahn O, et al. Ocean colour signature of climate change[J]. Nature Communications, 2019, 10(1):1-13.
doi: 10.1038/s41467-018-07882-8
[62] 邢小罡, 赵冬至, 刘玉光, 等. 叶绿素a荧光遥感研究进展[J]. 遥感学报, 2007, 11(1):137-144.
[62] Xing X G, Zhao D Z, Liu Y G, et al. Process in fluorescence remote sensing of chlorophy-a[J]. Journal of Remote Sensing, 2007, 11(1):137-144.
[63] Lee Z P. Remote sensing of inherent optical properties:Fundamentals,tests of algorithms,and applications[R]. Dartmouth: International Ocean-Colour Coordinating Group, 2006.
[64] Friedrichs A, Busch J A, van der Woerd H J, et al. SmartFluo:A method and affordable adapter to measure chlorophyll a fluorescence with smartphones[J]. Sensors, 2017, 17(4):678.
doi: 10.3390/s17040678 url:
[65] Pozdnyakov D V, Kondratyev K Y. Numerical modelling of natural water colour:Implications for remote sensing and limnological studies[J]. International Journal of Remote Sensing, 1998, 19(10):1913-1932.
doi: 10.1080/014311698215063 url:
[66] Woźniak S B, Meler J. Modelling water colour characteristics in an optically complex nearshore environment in the Baltic Sea:Quantitative interpretation of the Forel-Ule scale and algorithms for the remote estimation of seawater composition[J]. Remote Sensing, 2020,(12):2851-2885.
[67] Bukata R P, Jerome J H, Kondratyev K Y, et al. IEEE Conference on Computer Vision and Pattern Recognition.[J]. Journal of Great Lakes Research, 1997, 23(3):254-269.
doi: 10.1016/S0380-1330(97)70910-9 url:
[68] Leech D M, Pollard A I, Labou S G, et al. Fewer blue lakes and more murky lakes across the continental US:Implications for planktonic food webs[J]. Limnology and Oceanography, 2018, 63(6):2661-2680.
doi: 10.1002/lno.10967 pmid: 31942083
[69] Ting C S, Rocap G, King J, et al. Cyanobacterial photosynthesis in the oceans:The origins and significance of divergent light-harvesting strategies[J]. Trends in Microbiology, 2002, 10(3):134-142.
doi: 10.1016/S0966-842X(02)02319-3 url:
[70] Croce R, van Amerongen H. Natural strategies for photosynthetic light harvesting[J]. Nature Chemical Biology, 2014, 10(7):492-501.
doi: 10.1038/nchembio.1555 pmid: 24937067
[71] Monteith D T, Stoddard J L, Evans C D, et al. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry[J]. Nature, 2007, 450(7169):537-540.
doi: 10.1038/nature06316
[72] Weyhenmeyer G A, Müller R A, Norman M, et al. Sensitivity of freshwaters to browning in response to future climate change[J]. Climatic Change, 2016, 134(1-2):225-239.
doi: 10.1007/s10584-015-1514-z url:
[73] Kritzberg E S. Centennial-long trends of lake browning show major effect of afforestation[J]. Limnology and Oceanography Letters, 2017, 2(4):105-112.
doi: 10.1002/lol2.v2.4 url:
[74] Urrutia C P, Ekvall M K, Ratcovich J, et al. Phytoplankton diversity loss along a gradient of future warming and brownification in freshwater mesocosms[J]. Freshwater Biology, 2017, 62(11):1869-1878.
[75] Wilken S, Soares M, Pablo U C, et al. Primary producers or consumers? Increasing phytoplankton bacterivory along a gradient of lake warming and browning[J]. Limnology and Ceanography, 2018(63):S142-S155.
[76] FeuchtmayrH, Pottinger T G, Moore A, et al. Effects of brownification and warming on algal blooms,metabolism and higher trophic levels in productive shallow lake mesocosms[J]. Science of the Total Environment, 2019, 678:227-238.
doi: 10.1016/j.scitotenv.2019.04.105
[77] Deininger A, Faithfull C L, Bergström A K. Phytoplankton response to whole lake inorganic N fertilization along a gradient in dissolved organic carbon[J]. Ecology, 2017, 98(4):982-994.
doi: 10.1002/ecy.1758 pmid: 28144934
[78] Tan X, Zhang D, Duan Z, et al. Effects of light color on interspecific competition between microcystis aeruginosa and chlorella pyrenoidosa in batch experiment[J]. Environmental Science and Pollution Research, 2020, 27(1):344-352.
doi: 10.1007/s11356-019-06650-5
[79] Luimstra V M, Verspagen J M H, Xu T, et al. Changes in water color shift competition between phytoplankton species with contrasting light-harvesting strategies[J]. Ecology, 2020, 101(3):1-17.
[80] 李云梅, 赵焕, 毕顺, 等. 基于水体光学分类的二类水体水环境参数遥感监测进展[J]. 遥感学报, 2022, 26(1):19-31.
[80] Li Y M, Zhao H, Bi S, et al. Research progress of remote sensing monitoring of case II water environmental parameters based on water optical classification[J]. National Remote Sensing Bulletin, 2022, 26(1): 19-31.
[1] ZHANG Shibo, HU Wenmin, HAN Zhenying, LI Guo, WANG Zhongcheng, GAO Zhihai. Differences in rocky desertification information extracted from GF-6 and Landsat8 using the pixel unmixing method: A case study of Puding County[J]. Remote Sensing for Natural Resources, 2023, 35(3): 274-283.
[2] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[3] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[4] AN Na, ZHAO Yingying, SUN Yaqin, ZHANG Aizhu, FU Hang, YAO Yanjuan, SUN Genyun. An improved spatio-temporal fusion model for remote sensing images based on singular spectrum analysis[J]. Remote Sensing for Natural Resources, 2023, 35(2): 89-96.
[5] ZHENG Zongsheng, LIU Haixia, WANG Zhenhua, LU Peng, SHEN Xukun, TANG Pengfei. Improved 3D-CNN-based method for surface feature classification using hyperspectral images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 105-111.
[6] SHI Shanqiu. A geographic data fusion and update method based on geometric and attribute matching[J]. Remote Sensing for Natural Resources, 2023, 35(1): 251-257.
[7] LI Xianfeng, YUAN Zhengguo, DENG Weihua, YANG Liyuan, ZHOU Xueying, HU Lili. Spatial downscaling methods for the 2-meter air temperature grid data based on multiple machine learning models[J]. Remote Sensing for Natural Resources, 2023, 35(1): 57-65.
[8] JIN Yuanhang, XU Maolin, ZHENG Jiayuan. A dead tree detection algorithm based on improved YOLOv4-tiny for UAV images[J]. Remote Sensing for Natural Resources, 2023, 35(1): 90-98.
[9] FU Yukai, YANG Shuwen, YAN Heng, XUE Qing, HONG Weili, SU Hang. An SAR and optical image fusion algorithm coupling non-local self-similarity and divergence[J]. Remote Sensing for Natural Resources, 2023, 35(1): 99-106.
[10] SHEN Jun’ao, MA Mengting, SONG Zhiyuan, LIU Tingzhou, ZHANG Wei. Water information extraction from high-resolution remote sensing images using the deep-learning based semantic segmentation model[J]. Remote Sensing for Natural Resources, 2022, 34(4): 129-135.
[11] YU Wen, GONG Huili, CHEN Beibei, ZHOU Chaofan. Spatial-temporal evolution characteristics and prediction of land subsidence in the eastern plain of Beijing[J]. Remote Sensing for Natural Resources, 2022, 34(4): 183-193.
[12] MA Xiaojian, ZHAO Fashun, LIU Yanbin. Multi-feature fusion-based recognition and processing of impulse noise in remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 17-26.
[13] KONG Ailing, ZHANG Chengming, LI Feng, HAN Yingjuan, SUN Huanying, DU Manfei. Knowledge-based remote sensing image fusion method[J]. Remote Sensing for Natural Resources, 2022, 34(2): 47-55.
[14] YAN Hongbo, WEI Wanqiu, LU Xianjian, YANG Zhigao, LI Zhenbao. A review of remote sensing inversion methods for estimating soil water content based on hyperspectral characteristics[J]. Remote Sensing for Natural Resources, 2022, 34(2): 1-9.
[15] SU Fu, YU Haipeng, ZHU Weixi. Application of label clustering loss in the classification of remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2): 144-151.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech