Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (2) : 56-65     DOI: 10.6046/zrzyyg.2023358
|
Hierarchical fine-scale information extraction of bare land based on hue-saturation-value and texture features
WEI Hongyu1,2,3(), YAO Wenju1,2,3(), SUN Jian1,2,3, SUN Song1,2,3, ZHANG Huanxue4
1. Shandong Provincial Lunan Geology and Exploration Institute(Shandong Provincial Bureau of Geology and Mineral Resources No.2 Geological Brigade), Yanzhou 272100, China
2. Shandong Big Data Industry Innovation Center, Yanzhou 272100, China
3. Jining Data and Application Center of High Resolution Earth Observation System, Yanzhou 272100, China
4. College of Geography and Environment, Shandong Normal University, Jinan 250358, China
Download: PDF(8462 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Extracting information about bare land is crucial for territorial planning, environmental protection, and sustainable development. However, current information extraction methods for bare land struggle to balance the extraction efficiency and accuracy in large-scale and multitemporal applications. This study constructed normalized difference indices based on the analysis of the hue-saturation-value (HSV) features. By combining texture features and vegetation index, this study proposed a simple, efficient hierarchical fine-scale information extraction method for bare land. This proposed method was applied to the urban area of Qufu City, Shandong Province, China. First, with three GF-1 satellite images as the data source, the red, green, and blue bands from the images were converted to the HSV color space. Based on the differences in H, S, and V components between bare land and other land types, the normalized difference SH and SV indices were constructed for preliminary hierarchical information extraction of bare land. Second, texture features were introduced to low-rise building areas and bare land, where the differences in H, S, and V components are nonsignificant. Different texture features were comparatively analyzed for further information extraction of bare land. Third, the normalized difference vegetation indices were used to achieve the final information extraction of bare land, followed by post-processing of the results. The results of this study demonstrate that the constructed normalized difference indices, combined with homogeneous texture features, showed the optimal extraction performance, with an overall accuracy of above 93% and a Kappa coefficient of above 0.84, outperforming other classification methods. Therefore, the proposed method proves effective in extracting information about bare land, serving as a novel approach for bare land information extraction.

Keywords GF-1      hierarchical fine-scale information extraction of bare land      HSV      texture feature     
ZTFLH:  TP751  
Issue Date: 09 May 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Hongyu WEI
Wenju YAO
Jian SUN
Song SUN
Huanxue ZHANG
Cite this article:   
Hongyu WEI,Wenju YAO,Jian SUN, et al. Hierarchical fine-scale information extraction of bare land based on hue-saturation-value and texture features[J]. Remote Sensing for Natural Resources, 2025, 37(2): 56-65.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023358     OR     https://www.gtzyyg.com/EN/Y2025/V37/I2/56
Fig.1  Study area image and bare land survey examples
Fig.2  Sample data
Fig.3  Flow chart of bare land hierarchical fine extraction technology
影像日期 土堆-
施工工地
土堆-
未开发用地
土堆-
休耕的农用地
施工工地-
未开发用地
施工工地-
休耕的农用地
未开发用地-
休耕的农用地
2022-02-26 0.25 0.17 0.22 0.18 0.28 0.21
2022-09-28 0.51 0.21 0.25 0.71 0.41 0.34
2023-06-24 0.63 0.34 0.37 0.54 0.57 0.46
Tab.1  Separability of different types of bare land in the study area
Fig.4  HSV mean curve of typical surface features in the study area
Fig.5  Range of NDSHI and NDSVI index values for typical surface features in the study area
Fig.6  Texture features of low-rise area and bare land
Fig.7  Preliminary results of bare land hierarchical extraction
区域序号 真彩色影像 裸体分层初步
提取结果
均值 相异性 对比度 方差 同质性
1
2
3
4
Tab.2  Comparison of bare land re-extraction results based on different texture features
Fig.8  Hierarchical fine extraction results of bare land in the urban area of Qufu City
数据序号 土堆 施工工地 未开发用地 休耕的农用地
1
2
3
Tab.3  Extraction results of different types of bare land in the urban area of Qufu City
方法 2022年
2月26日
2022年
9月28日
2023年
6月24日
目视
解译
本文
方法
面向
对象
分类
最大
似然
分类
支持
向量
Tab.4  Comparison of bare land extraction results
影像日期 指标 本文方法 面向对象分类 最大似然分类 支持向量机
裸地 非裸地 裸地 非裸地 裸地 非裸地 裸地 非裸地
2022年
2月26日
PA/% 87.65 96.12 81.48 94.29 88.27 88.36 71.60 90.41
UA/% 89.31 95.46 84.08 93.23 73.71 95.32 73.42 89.59
OA/% 93.83 90.83 88.33 85.33
Kappa系数 0.84 0.77 0.72 0.63
2022年
9月28日
PA/% 83.55 98.88 96.71 93.08 92.62 94.68 91.45 94.64
UA/% 96.21 94.66 82.58 98.82 85.19 97.49 85.28 97.03
OA/% 95.00 94.00 94.17 93.83
Kappa系数 0.86 0.85 0.85 0.84
2023年
6月24日
PA/% 84.62 98.20 90.38 95.72 89.74 94.37 87.82 94.59
UA/% 94.29 94.78 88.13 96.59 84.85 96.32 85.09 95.67
OA/% 94.67 94.33 93.17 92.83
Kappa系数 0.86 0.85 0.83 0.82
Tab.5  Accuracy evaluation of bare land extraction results in the urban area of Qufu City
[1] 刘奥博, 吴其重, 陈雅婷, 等. 北京市平原区裸露地风蚀扬尘排放量[J]. 中国环境科学, 2018, 38(2):471-477.
[1] Liu A B, Wu Q Z, Chen Y T, et al. Estimation of dust emissions from bare soil erosion over Beijing Plain Area[J]. China Environmental Science, 2018, 38(2):471-477.
[2] 中国工程建设标准化协会. T/CECS 995—2022建筑施工裸地遥感监测技术导则[S]. 北京: 中国建筑出版社, 2022.
[2] China Association for Standardization of Engineering Construction. T/CECS 995—2022 Technical guidelines for remote sensing monitoring of bare land in construction[S]. Beijing: China Architecture Press, 2022.
[3] 熊文成, 徐永明, 李京荣, 等. 天津市扬尘污染源中高分辨率遥感监测[J]. 遥感信息, 2017, 32(3):45-49.
[3] Xiong W C, Xu Y M, Li J R, et al. Urban dust pollution sources monitoring based on medium and high resolution satellite imagery in Tianjin[J]. Remote Sensing Information, 2017, 32(3):45-49.
[4] 孙一鸣, 张宝钢, 吴其重, 等. 国产微景一号小卫星影像的城市裸地识别应用[J]. 自然资源遥感, 2022, 34(1):189-197.doi:10.6046/zrzyyg.2021056.
[4] Sun Y M, Zhang B G, Wu Q Z, et al. Application of domestic low-cost micro-satellite images in urban bare land identification[J]. Remote Sensing for Natural Resources, 2022, 34(1):189-197.doi:10.6046/zrzyyg.2021056.
[5] 邱永红, 谭永忠, 周国华. 一种遥感影像裸土地特征增强方法[J]. 计算机工程与应用, 2012, 48(32):196-199.
[5] Qiu Y H, Tan Y Z, Zhou G H. Feature enhancement method for bare land in remote sensing images[J]. Computer Engineering and Applications, 2012, 48(32):196-199.
[6] Nguyen C T, Chidthaisong A, Kieu D P, et al. A modified bare soil index to identify bare land features during agricultural fallow-period in Southeast Asia using Landsat8[J]. Land, 2021, 10(3):231.
[7] 方洪科, 刘贵芬, 朱从旭, 等. 山东省滨州市裸露地面遥感监测及简要分析[C]// 中国环境科学学会2023年科学技术年会论文集(四). 南昌, 2023:267-269.
[7] Fang H K, Liu G F, Zhu C X, et al. Remote sensing monitoring and brief analysis of bare land in Binzhou City,Shandong Province[C]// Chinese Society for Environmental Sciences.Proceedings of the 2023 Science and Technology Annual Conference of the Chinese Society for Environmental Sciences(4). Nanchang, 2023:267-269.
[8] Rogers A S, Kearney M S. Reducing signature variability in unmixing coastal marsh Thematic Mapper scenes using spectral indices[J]. International Journal of Remote Sensing, 2004, 25(12):2317-2335.
[9] Chen W, Liu L, Zhang C, et al. Monitoring the seasonal bare soil areas in Beijing using multitemporal TM images[C]// IGARSS 2004.2004 IEEE International Geoscience and Remote Sensing Symposium.Anchorage,AK.IEEE, 2004:3379-3382.
[10] 吴志杰, 赵书河. 基于TM图像的“增强的指数型建筑用地指数”研究[J]. 国土资源遥感, 2012, 24(2):50-55.doi:10.6046/gtzyyg.2012.02.10.
[10] Wu Z J, Zhao S H. A study of enhanced index-based built-up index based on Landsat TM imagery[J]. Remote Sensing for Land and Resources, 2012, 24(2):50-55.doi:10.6046/gtzyyg.2012.02.10.
[11] As-syakur A R, Adnyana I W S, Arthana I W, et al. Enhanced built-up and bareness index (EBBI) for mapping built-up and bare land in an urban area[J]. Remote Sensing, 2012, 4(10):2957-2970.
[12] 张雅琼, 赵宇昕, 屈冉, 等. 基于GF-1卫星遥感影像的生态空间周边建筑余泥渣土场提取方法研究[J]. 环境保护科学, 2018, 44(6):50-55,89.
[12] Zhang Y Q, Zhao Y X, Qu R, et al. Study of extraction method of construction waste residue fields around ecological space based on GF-1 satellite remote sensing image[J]. Environmental Protection Science, 2018, 44(6):50-55,89.
[13] 李霞, 徐涵秋, 李晶, 等. 基于NDSI和NDISI指数的SPOT-5影像裸土信息提取[J]. 地球信息科学学报, 2016, 18(1):117-123.
doi: 10.3724/SP.J.1047.2016.00117
[13] Li X, Xu H Q, Li J, et al. Extraction of bare soil features from SPOT-5 imagery based on NDSI and NDISI[J]. Journal of Geo-Information Science, 2016, 18(1):117-123.
[14] 尚明, 马杰, 李悦, 等. Landsat和GF数据面向对象土地覆盖分类研究[J]. 自然资源遥感, 2024. 36(3):240-247.doi:10.6046/zrzyyg.2023135.
[14] Shang M, Ma J, Li Y, et al. Research on object-oriented land cover classification of Landsat and GF data[J]. Remote Sensing for Natural Resources, 2024. 36(3):240-247.doi:10.6046/zrzyyg.2023135.
[15] 孟晋杰, 王建华. 高分一号影像数据城市生态用地监测[J]. 测绘科学, 2016, 41(9):33-37.
[15] Meng J J, Wang J H. Monitoring of urban ecological land use based on Gaofen-1 data[J]. Science of Surveying and Mapping, 2016, 41(9):33-37.
[16] 朱皓辰, 吴艳兰, 何彬方. 基于改进DenseNet模型的高分遥感影像城市裸地提取[J]. 安徽农业大学学报, 2022, 49(5):799-808.
[16] Zhu H C, Wu Y L, He B F. Extraction of urban bare land from high-resolution remote sensing images based on improved DenseNet model[J]. Journal of Anhui Agricultural University, 2022, 49(5):799-808.
[17] 邱昀, 姜磊, 李金香, 等. 深度学习在裸地扬尘源监测中的应用研究[J]. 中国环境监测, 2023, 39(s1):72-79.
[17] Qiu Y, Jiang L, Li J X, et al. Research on the application of deep learning in monitoring dust sources in bare land[J]. Environmental Monitoring in China, 2023, 39(s1):72-79.
[18] 宋承运, 曲雪杉, 胡光成, 等. 基于NDVI-NSSI空间与HSV变换的成熟期农作物遥感识别[J]. 农业机械学报, 2023, 54(8):193-200.
[18] Song C Y, Qu X S, Hu G C, et al. Crop identification in mature stage with remote sensing based on NDVI-NSSI space and HSV transformation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(8):193-200.
[19] 陶欢, 李存军, 谢春春, 等. 基于HSV阈值法的无人机影像变色松树识别[J]. 南京林业大学学报(自然科学版), 2019, 43(3):99-106.
doi: 10.3969/j.issn.1000-2006.201711035
[19] Tao H, Li C J, Xie C C, et al. Recognition of red-attack pine trees from UAV imagery based on the HSV threshold method[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43(3):99-106.
[20] 林雨准, 张保明, 郭海涛, 等. HSV变换和多尺度分割相结合的高分辨率遥感影像阴影检测[J]. 测绘科学技术学报, 2017, 34(5):486-490.
[20] Lin Y Z, Zhang B M, Guo H T, et al. Shadow detection from high resolution remote sensing imagery based on HSV transformation and multilevel segmentation[J]. Journal of Geomatics Science and Technology, 2017, 34(5):486-490.
[21] Haralick R M, Shanmugam K, Dinstein I. Textural features for image classification[J]. IEEE Transactions on Systems,Man,and Cybernetics, 1973, SMC-3(6):610-621.
[22] Rouse J, Haas R H, Schell J A, et al. Monitoring vegetation systems in the Great Plains with ERTS[J]. NASA Special Publication, 1974, 351:309.
[23] Song C, Woodcock C E, Seto K C, et al. Classification and change detection using landsat TM data when and how to correct atmospheric effects?[J]. Remote Sensing of Environment, 2001, 75(2):230-244.
[1] KANG Hui, DOU Wenzhang, HAN Lingyi, DING Ziyue, WU Liangting, HOU Lu. Rapid monitoring of surface water based on remote sensing data and DeepLabv3+ model[J]. Remote Sensing for Natural Resources, 2024, 36(4): 117-123.
[2] LIANG Xiya, WANG Juanle, LI Pengfei, DAVAADORJ Davaasuren. GF-1 images-based information extraction of natural roads in arid and semi-arid regions of the Mongolian Plateau: A case study of Gurvantes Soum, Mongolia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 122-131.
[3] GUO Xiaozheng, YAO Yunjun, JIA Kun, ZHANG Xiaotong, ZHAO Xiang. Information extraction of Mars dunes based on U-Net[J]. Remote Sensing for Natural Resources, 2021, 33(4): 130-135.
[4] WANG Rong, ZHAO Hongli, JIANG Yunzhong, HE Yi, DUAN Hao. Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops[J]. Remote Sensing for Natural Resources, 2021, 33(3): 72-79.
[5] LI Xusheng, LIU Yufeng, CHEN Donghua, LIU Saisai, LI Hu. Cloud detection based on support vector machine with image features for GF-1 data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 55-62.
[6] Zhuhong ZHANG, Baoyun WANG, Yumei SUN, Caidong LI, Xianchen SUN, Lingli ZHANG. River extraction from GF-1 satellite images combining stroke width transform and a geometric feature set[J]. Remote Sensing for Land & Resources, 2020, 32(2): 54-62.
[7] Yizhe WANG, Guo LIU, Li GUO, Shihu ZHAO, Xueli ZHANG. Research on ortho-rectification and true color synthesis technique of GF-1 WFV data in China-Pakistan Economic Corridor[J]. Remote Sensing for Land & Resources, 2020, 32(2): 213-218.
[8] Hui YUAN, Qiming QIN, Yuanheng SUN. Validation of LAI retrieval results of winter wheat in Yancheng, Luohe area of Henan Province[J]. Remote Sensing for Land & Resources, 2020, 32(1): 162-168.
[9] Ning WANG, Jiahua CHENG, Hanye ZHANG, Hongjie CAO, Jun LIU. Application of U-net model to water extraction with high resolution remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(1): 35-42.
[10] Jida PENG, Chungui ZHANG. Remote sensing monitoring of vegetation coverage by GF-1 satellite: A case study in Xiamen City[J]. Remote Sensing for Land & Resources, 2019, 31(4): 137-142.
[11] Xiaotong LI, Xianlin QIN, Shuchao LIU, Guifen SUN, Qian LIU. Estimation of forest leaf area index based on GF-1 WFV data[J]. Remote Sensing for Land & Resources, 2019, 31(3): 80-86.
[12] Yilin JIA, Wen ZHANG, Lingkui MENG. A study of selection method of NDWI segmentation threshold for GF-1 image[J]. Remote Sensing for Land & Resources, 2019, 31(1): 95-100.
[13] Guifen SUN, Xianlin QIN, Shuchao LIU, Xiaotong LI, Xiaozhong CHEN, Xiangqing ZHONG. Potential analysis of typical vegetation index for identifying burned area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 204-211.
[14] Chen GAO, Jian XU, Dan GAO, Lili WANG, Yeqiao WANG. Retrieval of concentration of total suspended matter from GF-1 satellite and field measured spectral data during flood period in Poyang Lake[J]. Remote Sensing for Land & Resources, 2019, 31(1): 101-109.
[15] Jian LIAO, Xingfa GU, Yulin ZHAN, Yazhou ZHANG, Xinyu REN, Shuaiyi SHI. A method based on harmonic model for generating synthetic GF-1 images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 106-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech