Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (2) : 66-79     DOI: 10.6046/zrzyyg.2023352
|
Downscaling of precipitation products based on the random forest and assessment of their hydrologic applicability
CHEN Duoyan(), SHI Lan()
School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
Download: PDF(6326 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Precipitation products, including the Global Precipitation Measurement (GPM) mission, have been widely used in river basin studies due to their advantages like continuous distributions and broad spatial ranges. However, they are limited by insufficient accuracy and low spatial resolution. Based on the random forest (RF), this study integrated multisource influencing factors to generate two daily precipitation products with high spatial resolution: RF1 and RF2. The two daily precipitation products were input to the Hydrologic Engineering Center’s Hydrologic Modeling System (HEC-HMS) model to simulate daily runoff changes in the Xinjiang River basin. Finally, this study assessed the contributions of RF1 and RF2 to the improvement of GPM’s hydrologic applicability. The results show that both RF1 and RF2 improved the accuracy and distribution details of GPM data. RF2 exhibited a higher correlation and lower error, whereas RF1 manifested superior performance in detecting precipitation events. The RF1-simulated runoff curves resembled GPM-derived curves, showing significant improvements. RF2 corrected partial GPM’s overestimates and more accurately revealed the peak values of real flow curves in some periods. However, the uneven distribution of monitoring stations affected RF2’s prediction in complex terrain areas, limiting its simulation accuracy. Overall, both RF1 and RF2 can effectively reflect daily precipitation changes in the Xinjiang River basin, improving GPM’s hydrologic applicability to varying degrees.

Keywords downscaling      GPM      random forest      runoff simulation      Xinjiang River basin     
ZTFLH:  P412.27  
Issue Date: 09 May 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Duoyan CHEN
Lan SHI
Cite this article:   
Duoyan CHEN,Lan SHI. Downscaling of precipitation products based on the random forest and assessment of their hydrologic applicability[J]. Remote Sensing for Natural Resources, 2025, 37(2): 66-79.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023352     OR     https://www.gtzyyg.com/EN/Y2025/V37/I2/66
Fig.1  Overview map of Xinjiang Basin
计算模块 计算方法 方法原理与输入参数
产流计算 SCS曲线数法 根据累积降雨量、土地利用方式、土壤类型以及前期土壤含水量等条件模拟计算产流量,由土壤最大蓄水能力与流域特征的关系引入参数CN
直接径流计算 斯奈德单位线法 通过收集某集水区的降雨和径流资料,算出单位线,单位线峰现时间与流量滞时tlag有关
基流计算 指数衰退法 假设集水区任意时刻的基流量和初始基流存在某种关系,由流量成分取值衰减常数k
河道汇流计算 马斯京根法 将马斯京根槽蓄曲线方程和水量平衡方程联合演算出马斯京根流量演算方程,需要输入蓄量常数K和流量比重因子x
Tab.1  HEC-HMS calculation method selection
地形因子 海拔 坡度 地形起伏度 地形切割度 地形位置指数 地形曲率
海拔 1.000**① 0.718** 0.819** 0.858** 0.314** 0.544**
坡度 1.000** 0.920** 0.886** 0.011** 0.614**
地形起伏度 1.000** 0.958** 0.044** 0.670**
地形切割度 1.000** 0.088** 0.614**
地形位置指数 1.000** -0.079**
地形曲率 1.000**
Tab.2  Correlation coefficients between topographic factors
Fig.2  Spatial distribution of average monthly precipitation in flood season for GPM, RF1 and RF2
Fig.3  Scatter diagram of the predicted value distribution of falling water in different rainfall classes
产品 精度评价指标 日降水
事件
探测
能力
评价
指标
CC MAE/mm RMSE/mm POD FAR ACC
GPM 0.696 6.833 14.894 0.772 0.448 0.523
RF1 0.717 6.766 14.141 0.970 0.438 0.564
RF2 0.779 5.480 11.991 0.871 0.451 0.530
Tab.3  Evaluation of daily precipitation accuracy and precipitation event detection ability of products
Fig.4  Comparison of monthly precision of daily precipitation products
Fig.5  Spatial distribution of evaluation indexes of GPM, RF1 and RF2
Fig.6  Schematic diagram of sub watershed division and meteorological station control range
场次 参数 GPM RF1 RF2 场次 参数 GPM RF1 RF2


20180410 RNS 0.697 0.689 0.499 20190423 RNS 0.806 0.851 0.546
RCC 0.892 0.870 0.754 RCC 0.915 0.938 0.854
20180511 RNS 0.870 0.909 0.751 20190516 RNS 0.509 0.643 -0.459
RCC 0.943 0.959 0.937 RCC 0.877 0.904 0.855
20180526 RNS 0.427 0.495 0.304 20190531 RNS 0.703 0.791 0.822
RCC 0.764 0.779 0.874 RCC 0.887 0.898 0.907
20180610 RNS 0.414 0.433 0.631 20190617 RNS 0.218 0.363 -0.196
RCC 0.836 0.836 0.936 RCC 0.800 0.854 0.724
20180630 RNS 0.644 0.667 0.367 20190703 RNS 0.377 0.435 0.523
RCC 0.965 0.970 0.883 RCC 0.788 0.790 0.746
20190401 RNS 0.712 0.788 -0.117
RCC 0.910 0.923 0.848


20200418 RNS -0.169 0.062 -0.658 20200608 RNS 0.289 0.773 0.110
RCC 0.727 0.709 0.746 RCC 0.956 0.972 0.947
20200509 RNS -3.681 -1.988 -4.469 20200629 RNS 0.600 0.610 0.618
RCC 0.163 0.312 0.166 RCC 0.879 0.872 0.867
20200524 RNS 0.608 0.712 0.893
RCC 0.977 0.963 0.989
Tab.4  Evaluation of hydrological simulation accuracy of GPM,RF1 and RF2 in Yiyang Station
Fig.7  Comparison of simulation results and measured results
Fig.8  Comparison of simulation results and measured results
[1] 李媛媛, 宁少尉, 丁伟, 等. 最新GPM降水数据在黄河流域的精度评估[J]. 国土资源遥感, 2019, 31(1):164-170.doi:10.6046/gtzyyg/2019.01.22.
[1] Li Y Y, Ning S W, Ding W, et al. The evaluation of latest GPM-Era precipitation data in Yellow River basin[J]. Remote Sensing for Land and Resources, 2019, 31(1):164-170.doi:10.6046/gtzyyg/2019.01.22.
[2] Mohammed I N, Bolten J D, Srinivasan R, et al. Improved hydrological decision support system for the lower Mekong River Basin using satellite-based earth observations[J]. Remote Sensing, 2018, 10(6):885.
doi: 10.3390/rs10060885 pmid: 29938116
[3] 刘冀, 孙周亮, 张特, 等. 基于不同卫星降雨产品的澴水花园流域径流模拟比较研究[J]. 长江流域资源与环境, 2018, 27(11):2558-2567.
[3] Liu J, Sun Z L, Zhang T, et al. Hydrological evaluations of runoff simulations based on multiple satellite precipitation products over the Huayuan catchment[J]. Resources and Environment in the Yangtze Basin, 2018, 27(11):2558-2567.
[4] 王书霞, 张利平, 喻笑勇, 等. 遥感降水产品在澜沧江流域径流模拟中的适用性研究[J]. 长江流域资源与环境, 2019, 28(6):1365-1374.
[4] Wang S X, Zhang L P, Yu X Y, et al. Application of remote sensing precipitation products in runoff simulation over the Lancang River Basin[J]. Resources and Environment in the Yangtze Basin, 2019, 28(6):1365-1374.
[5] 蔡洁连. 基于VIC模型的卫星降水产品在赣江流域的应用研究[D]. 南宁: 南宁师范大学, 2021.
[5] Cai L J. Research on the applicability of satellite precipitation products based on VIC model in Ganjiang basin[D]. Nanning: Nanning Normal University, 2021.
[6] Ji H Y, Peng D Z, Gu Y, et al. Evaluation of multiple satellite precipitation products and their potential utilities in the Yarlung Zangbo River Basin[J]. Scientific Reports, 2022, 12:13334.
doi: 10.1038/s41598-022-17551-y pmid: 35922539
[7] Lyu A F, Qi S S, Wang G S. Multi-model driven by diverse precipitation datasets increases confidence in identifying dominant factors for runoff change in a subbasin of the Qaidam Basin of China[J]. Science of the Total Environment, 2022, 802:149831.
[8] 孙赫, 苏凤阁. 雅鲁藏布江流域多源降水产品评估及其在水文模拟中的应用[J]. 地理科学进展, 2020, 39(7):1126-1139.
doi: 10.18306/dlkxjz.2020.07.006
[8] Sun H, Su F G. Evaluation of multiple precipitation datasets and their potential utilities in hydrologic modeling over the Yarlung Zangbo River Basin[J]. Progress in Geography, 2020, 39(7):1126-1139.
doi: 10.18306/dlkxjz.2020.07.006
[9] 范宏翔, 何菡丹, 徐力刚, 等. 基于长短记忆模型的鄱阳湖流域径流模拟及其演变的归因分析[J]. 湖泊科学, 2021, 33(3):866-878.
[9] Fan H X, He H D, Xu L G, et al. Simulation and attribution analysis based on the long-short-term-memory network for detecting the dominant cause of runoff variation in the Lake Poyang Basin[J]. Journal of Lake Sciences, 2021, 33(3) :866-878.
[10] 张帆, 张永勇, 陈俊旭, 等. 多种机器学习模型对不同洪水类型特征指标模拟效果评估[J]. 地理科学进展, 2022, 41(7):1239-1250.
doi: 10.18306/dlkxjz.2022.07.008
[10] Zhang F, Zhang Y Y, Chen J X, et al. Performance of multiple machine learning model simulation of process characteristic indicators of different flood types[J]. Progress in Geography, 2022, 41(7):1239-1250.
doi: 10.18306/dlkxjz.2022.07.008
[11] 范田亿, 张翔, 黄兵, 等. 湘江流域TRMM卫星降水产品降尺度研究与应用[J]. 自然资源遥感, 2021, 33(4):209-218.doi:10.6046/zrzyyg.2020395.
[11] Fan T Y, Zhang X, Huang B, et al. Downscaling of TRMM precipitation products and its application in Xiangjiang River Basin[J]. Remote Sensing for Natural Resources, 2021, 33(4):209-218.doi:10.6046/zrzyyg.2020395.
[12] 杜懿, 王大洋, 王大刚. GPM卫星降水产品空间降尺度研究——以贵州省为例[J]. 自然资源遥感, 2021, 33(4):111-120.doi:10.6046/zrzyyg.2021009.
[12] Du Y, Wang D Y, Wang D G. Spatial downscaling of GPM precipitation products:A case study of Guizhou Province[J]. Remote Sensing for Natural Resources, 2021, 33(4):111-120.doi:10.6046/zrzyyg.2021009.
[13] Ma Z, Tan X, Yang Y, et al. The first comparisons of IMERG and the downscaled results based on IMERG in hydrological utility over the Ganjiang River Basin[J]. Water, 2018, 10(10):1392.
[14] 闵心怡, 杨传国, 李莹, 等. 基于改进的湿润地区站点与卫星降雨数据融合的洪水预报精度分析[J]. 水电能源科学, 2020, 38(04):1-5.
[14] Min X Y, Yang C G, Li Y, et al. Accuracy analysis of flood forecasting based on the fusion data of satellite and guage rainfalls in humid region[J]. Water Resources and Power, 2020, 38(4):1-5.
[15] 田晶, 郭生练, 刘德地, 等. 气候与土地利用变化对汉江流域径流的影响[J]. 地理学报, 2020, 75(11):2307-2318.
doi: 10.11821/dlxb202011003
[15] Tian J, Guo S L, Liu D D, et al. Impacts of climate and land use/cover changes on runoff in the Hanjiang River basin[J]. Acta Geographica Sinica, 2020, 75(11):2307-2318.
doi: 10.11821/dlxb202011003
[16] 孙桂凯, 魏义熊, 王亚芳, 等. IMERG卫星降水产品融合校准及其水文效用[J]. 水电能源科学, 2021, 39(11):23-26.
[16] Sun G K, Wei Y X, Wang Y F, et al. Fusion Calibration of precipitation data by IMERG satellite and its hydrological applicability[J]. Water Resources and Power, 2021, 39(11):23-26.
[17] Zhao Y M, Xu K, Dong N P, et al. Optimally integrating multi-source products for improving long series precipitation precision by using machine learning methods[J]. Journal of Hydrology, 2022, 609:127707.
[18] Cheng X, Ma X X, Wang W S, et al. Application of HEC-HMS parameter regionalization in small watershed of hilly area[J]. Water Resources Management, 2021, 35(6):1961-1976.
[19] Fanta S S, Sime C H. Performance assessment of SWAT and HEC-HMS model for runoff simulation of Toba watershed,Ethiopia[J]. Sustainable Water Resources Management, 2022, 8(1):1-16.
[20] 廖如婷, 胡珊珊, 杜龙刚, 等. 基于HEC-HMS模型的温榆河流域水文模拟[J]. 南水北调与水利科技, 2018, 16(6):15-20.
[20] Liao R T, Hu S S, Du L G, et al. Hydrological simulation of Wenyu River Basin based on HEC-HMS model[J]. South-to-North Water Transfers and Water Science and Technology, 2018, 16(6):15-20.
[21] Fang L, Huang J L, Cai J T, et al. Hybrid approach for flood susceptibility assessment in a flood-prone mountainous catchment in China[J]. Journal of Hydrology, 2022, 612:128091.
[22] 李相虎, 张奇, 邵敏. 基于TRMM数据的鄱阳湖流域降雨时空分布特征及其精度评价[J]. 地理科学进展, 2012, 31(9):1164-1170.
[22] Li X H, Zhang Q, Shao M. Spatio-temporal distribution of precipitation in Poyang Lake basin based on TRMM data and precision evaluation[J]. Progress in Geography, 2012, 31(9):1164-1170.
doi: 10.11820/dlkxjz.2012.09.007
[23] 曾冰茹, 李云良, 谭志强. 鄱阳湖流域水文连通性的影响因素和环境效应[J]. 长江流域资源与环境, 2022, 31(12):2718-2728.
[23] Zeng B R, Li Y L, Tan Z Q. Influential factors and environmental effects of hydrological connectivity in the Poyang Lake catchment[J]. Resources and Environment in the Yangtze Basin, 2022, 31(12):2718-2728.
[24] 田智慧, 尹传鑫, 王晓蕾. 鄱阳湖流域生态环境动态评估及驱动因子分析[J]. 环境科学, 2023, 44(2):816-827.
[24] Tian Z H, Yin C X, Wang X L. Dynamic monitoring and driving factors analysis of ecological environment quality in Poyang Lake basin[J]. Environmental Science, 2023, 44(2):816-827.
[25] 徐新良. 中国月度植被指数(NDVI)空间分布数据集[EB/OL]. 中国科学院资源环境科学数据中心数据注册与出版系统(http:/www.resdc.cn/DOI), 2018.
[25] Xu X L. Monthly vegetation index spatial distribution dataset of China[EB/OL]. Geographic Remote Sensing Ecological Network Platform(www.gisrs.cn), 2018.
[26] Didan K. MODIS/Terra Vegetation Indices Monthly L3 Global 1km SIN Grid V006[EB/OL]. NASA EOSDIS Land Processes DAAC, 2015.
[27] 欧立健, 余锦华, 钟校尧, 等. 海表温度的增暖趋势和自然变率对长江中下游夏季极端降水强度的影响[J]. 大气科学, 2022. 46(6):1595-1606.
[27] Ou L J, Yu J H, Zhong X Y, et al. Impacts of the SST warming trend and natural variability on the summer extreme precipitation intensity of the middle and lower reaches of the Yangtze River[J]. Chinese Journal of Atmospheric Sciences, 2022, 46(6):1595-1606.
[28] 陈玥, 王爱慧, 支蓉, 等. 中国东部降水中大尺度环流和局地陆-气相互作用的贡献:河南“21·7”强降水事件特征影响因子探究[J]. 大气科学, 2023, 47(2):551-566.
[28] Chen Y, Wang A H, Zhi R, et al. Contributions of large-scale circulation and local land-atmosphere interaction to precipitation in eastern China:Investigation on influencing factors of the July 2021 heavy precipitation event in Henan Province[J]. Chinese Journal of Atmospheric Sciences, 2023, 47(2):551-566.
[29] 潘锋, 何大明, 曹杰, 等. 夏季怒江流域水汽输送多支特征及对降水影响[J]. 地理学报, 2023, 78(1):87-100.
doi: 10.11821/dlxb202301006
[29] Pan F, He D M, Cao J, et al. Multiple branches of water vapor transport over the Nujiang River Basin in summer and its impact on precipitation[J]. Acta Geographica Sinica, 2023, 78(1):87-100.
doi: 10.11821/dlxb202301006
[30] Arfanad A, Zhang W C, Zhang Z J, et al. Reconstructing high-resolution gridded precipitation data using an improved downscaling approach over the high altitude mountain regions of Upper Indus basin (UIB)[J]. Science of the Total Environment, 2021, 784:147140.
[31] 李新同, 史岚, 陈多妍. 基于深度学习的闽浙赣GPM降水产品降尺度方法[J]. 自然资源遥感, 2023, 35(4):105-113.doi:10.6046/zrzyyg.2022270.
[31] Li X T, Shi L, Chen D Y. Research on downscaling of GPM precipitation products based on deep learning in Fujian-Zhejiang-Jiangxi[J]. Remote Sensing for Natural Resources, 2023, 35(4):105-113.doi:10.6046/zrzyyg.2022270.
[32] 薛智暄, 张丽, 王新军, 等. 古尔班通古特沙漠SMAP土壤水分产品降尺度分析[J]. 干旱区研究, 2023, 40(4):583-593.
doi: 10.13866/j.azr.2023.04.07
[32] Xue Z X, Zhang L, Wang X J, et al. Downscaling analysis of SMAP soil moisture products in Gurbantunggut Desert[J]. Arid Zone Research, 2023, 40(4):583-593.
doi: 10.13866/j.azr.2023.04.07
[33] 郭远智, 李许红. 基于随机森林模型的黄河流域城市建设用地结构时空演化及其驱动机制研究[J]. 地理科学进展, 2023, 42(1):12-26.
doi: 10.18306/dlkxjz.2023.01.002
[33] Guo Y Z, Li X H. Spatiotemporal changes of urban construction land structure and driving mechanism in the Yellow River Basin based on random forest model[J]. Progress in Geography, 2023, 42(1):12-26.
doi: 10.18306/dlkxjz.2023.01.002
[34] 李娜娜, 吴骅, 栾庆祖. 城市地表温度空间降尺度研究——以北京市为例[J]. 遥感学报, 2021, 25(8):1808-1820.
[34] Li N N, Wu H, Luan Q Z. Land surface temperature downscaling in urban area:A case study of Beijing[J]. National Remote Sensing Bulletin, 2021, 25(8):1808-1820.
[35] 曾岁康, 雍斌. 全球降水计划IMERG和GSMaP反演降水在四川地区的精度评估[J]. 地理学报, 2019, 74(7):1305-1318.
doi: 10.11821/dlxb201907003
[35] Zeng S K, Yong B. Evaluation of the GPM-based IMERG and GSMaP precipitation estimates over the Sichuan region[J]. Acta Geographica Sinica, 2019, 74(7):1305-1318.
doi: 10.11821/dlxb201907003
[36] 彭振华, 李艳忠, 余文君, 等. 遥感降水产品在中国不同气候区的适用性研究[J]. 地球信息科学学报, 2021, 23(7):1296-1311.
doi: 10.12082/dqxxkx.2021.200348
[36] Peng Z H, Li Y Z, Yu W J, et al. Research on the applicability of remote sensing precipitation products in different climatic regions of China[J]. Journal of Geo-Information Science, 2021, 23(7):1296-1311.
[37] 曹旖丹. 气候变化下长白山二道松花江流域降雨径流模拟及预测[D]. 长春: 吉林大学, 2021.
[37] Cao Y D. Simulation and prediction of rainfall and runoff in the Erdao Songhua River basin of Changbai Mountain under climate change[D]. Changchun: Jilin University, 2021.
[38] 原文林, 付磊, 高倩雨. 基于HEC-HMS模型的山洪灾害临界雨量研究[J]. 人民黄河, 2019, 41(8):22-27,31.
[38] Yuan W L, Fu L, Gao Q Y. Research on rainfall threshold of flash flood based on HEC-HMS model[J]. Yellow River, 2019, 41(8):22-27,31.
[39] Belay Y Y, Gouday Y A, Alemnew H N. Comparison of HEC-HMS hydrologic model for estimation of runoff computation techniques as a design input:Case of Middle Awash multi-purpose dam,Ethiopia[J]. Applied Water Science, 2022, 12(10):237.
[40] 张利平, 覃光华, 杨玲玲, 等. IMERG和GSMaP卫星降水产品在岷江流域的适用性评价[J]. 水文, 2022, 42(6):93-98.
[40] Zhang L P, Qin G H, Yang L L, et al. Evaluation of the IMERG and GSMaP precipitation products over Minjiang Watershed[J]. Journal of China Hydrology, 2022, 42(6):93-98.
[1] DENG Jianming, YAO Hang, FU Bolin, GU Sen, TANG Jie, GAN Yuanyuan. Monitoring the spatiotemporal dynamics of mangrove forests in Beibu Gulf, Guangxi Zhuang Autonomous Region, China, using Google Earth Engine and time-series active and passive remote sensing images[J]. Remote Sensing for Natural Resources, 2025, 37(2): 235-245.
[2] NIU Quanfu, LEI Jiaojiao, LIU Bo, WANG Hao, ZHANG Ruizhen, WANG Gang. Application of Sentinel-1/2 imagery in identifying hills cutting and land reclaiming in the Beishan Mountain of Lanzhou[J]. Remote Sensing for Natural Resources, 2025, 37(1): 142-151.
[3] LI Yubin, WANG Zongming, ZHAO Chuanpeng, JIA Mingming, REN Chunying, MAO Dehua, YU Hao. Remote sensing-based monitoring and identification mechanisms of the spatiotemporal dynamics of Suaeda salsa in the Liaohe estuary, China[J]. Remote Sensing for Natural Resources, 2025, 37(1): 195-203.
[4] FAN Yinglin, DU Song, ZHAO Yue, QIU Jingzhi, DU Xiaochuan, ZHANG Yufeng, DING Yan, SONG Sitong, CHE Qiaohui. Information extraction of coal gangue mountain based on random forest algorithm[J]. Remote Sensing for Natural Resources, 2025, 37(1): 54-61.
[5] YAN Jianan, CHEN Hong, ZHANG Yuze, WU Hua. A method for reconstructing hourly 100-m-resolution all-weather land surface temperature[J]. Remote Sensing for Natural Resources, 2024, 36(3): 72-80.
[6] YANG Chenfei, WU Tianjun, WANG Changpeng, YANG Lijuan, LUO Jiancheng, ZHANG Xin. Construction and application of a comprehensive drought index based on Copula function on a kilometer scale: A case study of Chongqing, China[J]. Remote Sensing for Natural Resources, 2024, 36(3): 117-127.
[7] LIU Yongxin, ZHANG Siyuan, BIAN Peng, WANG Pijun, YUAN Shuai. Exploring the spatio-temporal evolution of land cover types in the Bayannur section of the Yellow River basin from 1989 to 2020[J]. Remote Sensing for Natural Resources, 2024, 36(2): 207-217.
[8] FENG Qian, ZHANG Jiahua, DENG Fan, WU Zhenjiang, ZHAO Enling, ZHENG Peixin, HAN Yang. A mapping methodology for wetland categories of the Yellow River Delta based on optimal feature selection and spatio-temporal fusion algorithm[J]. Remote Sensing for Natural Resources, 2024, 36(2): 39-49.
[9] LIU Meiyan, NIE Sheng, WANG Cheng, XI Xiaohuan, CHENG Feng, FENG Baokun. Forest stock volume inversion based on ICESat-2 and Sentinel-2A data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 210-216.
[10] LU Xianjian, ZHANG Huanling, YAN Hongbo, LI Zhenbao, GUO Ziyang. A method for sugarcane information extraction based on multi-feature optimal selection of Sentinel-1/2 image data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 86-94.
[11] DU Xiaochuan, LOU Debo, XU Lingang, FAN Yinglin, ZHANG Lin, LI Wanyue. Extracting granite pegmatite information based on GF-2 images and the random forest algorithm[J]. Remote Sensing for Natural Resources, 2023, 35(4): 53-60.
[12] YU Shaohuai, XU Qiao, YU Fei. Method for assessing landslide susceptibility of highways in mountainous areas based on optical and SAR remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 81-89.
[13] ZHONG Xiaoyong, LI Hongyi, GUO Dongyan, XIE Modian, ZHAO Wanru, HU Bifeng. Spatial distribution prediction of soil pH in arable land of Jiangxi Province based on multi-source environmental variables and the random forest model[J]. Remote Sensing for Natural Resources, 2023, 35(4): 178-185.
[14] HE Suling, HE Zenghong, PAN Jiya, WANG Jinliang. County-scale land use/land cover simulation based on multiple models[J]. Remote Sensing for Natural Resources, 2023, 35(4): 201-213.
[15] CHEN Jian, LI Hu, LIU Yufeng, CHANG Zhu, HAN Weijie, LIU Saisai. Crops identification based on Sentinel-2 data with multi-feature optimization[J]. Remote Sensing for Natural Resources, 2023, 35(4): 292-300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech