Please wait a minute...
 
自然资源遥感  2025, Vol. 37 Issue (4): 99-107    DOI: 10.6046/zrzyyg.2024080
  技术应用 本期目录 | 过刊浏览 | 高级检索 |
基于多源遥感时序特征和卷积神经网络的露天矿区土地利用分类
刘昊1,2(), 杜守航1,2(), 邢江河2, 李军2, 高天琳2, 尹程弘2
1.自然资源要素耦合过程与效应重点实验室,北京 100055
2.中国矿业大学(北京)地球科学与测绘工程学院,北京 100083
Land use classification of open-pit mining areas based on multi-source remote sensing time series features and convolutional neural networks
LIU Hao1,2(), DU Shouhang1,2(), XING Jianghe2, LI Jun2, GAO Tianlin2, YIN Chenghong2
1. Key Laboratory of Coupling Process and Effect of Natural Resources Elements, Beijing 100055, China
2. College of Geosciences and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
全文: PDF(4807 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 矿区资源开发会导致土地利用格局发生变化,造成生态环境破坏。因此,进行土地利用分类对矿区生态修复和管理至关重要。目前,遥感影像广泛应用于土地利用分类,但单一数据源在矿区分类中存在局限,常规机器学习算法亦难以有效应对该任务。为提高分类精度,该文以内蒙古自治区鄂尔多斯市东胜区东部区域为研究区,利用卷积神经网络融合多源遥感数据实现矿区土地利用分类。首先,利用Sentinel-1/2、珞珈一号和美国国家航空航天局(National Aeronautics and Spoce Administration,NASA)数字高程模型(digital elevation model,DEM)数据构建多源遥感时序特征集合; 其次,联合Relief-F与随机森林(random forest,RF)算法实现特征优选; 最后,基于ResNet50卷积神经网络模型挖掘特征中的地物信息,以实现矿区的用地分类。结果表明: 文章提出的方法土地利用分类的总体精度(overall accuracy,OA)为95.36%,Kappa系数为0.942 1,高于RF等常规方法,Relief-F与RF综合特征优选可以提高多种分类器的分类精度。该研究为矿区土地利用分类提供了方法参考和借鉴。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘昊
杜守航
邢江河
李军
高天琳
尹程弘
关键词 矿区土地利用多源遥感特征Relief-F随机森林特征优选ResNet50    
Abstract

Resource development in mining areas alters land use patterns and causes ecological damage. This renders land use identification crucial to ecological restoration and management in mining areas. Although remote sensing imagery is widely used for land use classification, the use of a single data source has limitations in the classification for mining areas. Additionally, it is difficult for conventional machine learning algorithms to effectively perform the classification. To improve classification accuracy, this study investigated the eastern part of Dongsheng District, Ordos City as an example to conduct land use classification for mining areas using a convolutional neural network (CNN) combined with multi-source remote sensing data. First, a multi-source remote sensing time series feature set was developed using data from Sentinel-1/2, Luojia-1 01, and the NASA digital elevation model (DEM). Next, optimal features were selected using the Relief-F algorithm combined with a random forest algorithm. Finally, information on surface features was extracted using the ResNet50 CNN model. This facilitated land use classification in the mining area. The results show that the proposed method achieved an overall land use classification accuracy of 95.36% and a Kappa coefficient of 0.942 1, outperforming conventional methods such as the random forest approach. Furthermore, selecting optimal features using Relief-F combined with the random forest approach enhanced the classification accuracy of various classifiers. This study offers a methodological reference for land use classification of mining areas.

Key wordsmining area land use    multi-source remote sensing features    Relief-F    random forest    feature selection    ResNet50
收稿日期: 2024-02-27      出版日期: 2025-09-03
ZTFLH:  TP79  
基金资助:自然资源要素耦合过程与效应重点实验室开放课题“多源数据融合的矿区精细用地分类与生态环境质量评价”(2022KFKTC001)
作者简介: 刘 昊(2001-),男,硕士研究生,主要从事遥感智能解译方面的研究。Email: liuhao07515@163.com
引用本文:   
刘昊, 杜守航, 邢江河, 李军, 高天琳, 尹程弘. 基于多源遥感时序特征和卷积神经网络的露天矿区土地利用分类[J]. 自然资源遥感, 2025, 37(4): 99-107.
LIU Hao, DU Shouhang, XING Jianghe, LI Jun, GAO Tianlin, YIN Chenghong. Land use classification of open-pit mining areas based on multi-source remote sensing time series features and convolutional neural networks. Remote Sensing for Natural Resources, 2025, 37(4): 99-107.
链接本文:  
https://www.gtzyyg.com/CN/10.6046/zrzyyg.2024080      或      https://www.gtzyyg.com/CN/Y2025/V37/I4/99
Fig.1  研究区概况与遥感影像图
Fig.2  分类体系影像示意图
类别 定义 样本点/个
林草地 林地、草地等植被区域 600
水域 自然陆地水域、水利设施、积水塘 200
建设用地 城乡居民点及交通用地 670
裸露土地 地表覆盖为土壤或岩石的区域 200
矿区 矿坑及开采矿物堆积区域 600
修复治理区 停止开采后,进行生态修复的区域 600
Tab.1  分类方案、样本点及图像特征
Fig.3  方法流程
编码 数据源 类别 特征 分辨率/m
1-17 Sentinel-2 光谱 blue; green; red; NIR; red edge 1-4; SWIR1-2; NDVI; EVI; NDWI; LSWI; NDBI; RRI; NDRI 10/20
18-20 Sentinel-2 缨帽 Brightness; Greenness; Wetness 10
21-25 Sentinel-2 纹理 Asm; Ent; Contrast; Idm; Corr 10
26-27 Sentinel-1 极化 VV; VH; 10
28-30 NASA DEM 地形 Elevation; Slope; Aspect 30
31 珞珈一号 经济 NTL 130
Tab.2  特征来源、类别和分辨率
Fig.4  ResNet50网络结构
指标 OA/% Kappa系数
ResNet50 95.36 0.942 1
RF 94.08 0.926 4
ANN 86.64 0.833 6
KNN 92.92 0.912 2
SVM 91.52 0.894 8
贝叶斯 77.35 0.721 9
Tab.3  ResNet50的有效性
Fig.5  ResNet50与其他方法的分类结果
Fig.6  2种方法特征重要性
类型 优选特征
经济 NTL
地形 Elevation,Slope
纹理 春季: Contrast; 秋季: Contrast; 冬季: Contrast
缨帽 春季: Brightness,Greenness,Wetness
夏季: Brightness,Greenness,Wetness
秋季: Brightness,Greenness,Wetness
冬季: Brightness,Greenness,Wetness
极化 春季: VV,VH; 夏季: VV,VH
秋季: VV,VH; 冬季: VV,VH
光谱 春季: B2,B3,B4,B8,B5,B6,B7,B8A,B11,B12,NDVI,EVI,NDBI,NDWI,LSWI,NDRI,RRI
夏季: B2,B3,B4,B8,B5,B6,B7,B8A,B11,B12,NDVI,NDBI,NDWI,LSWI,NDRI,RRI
秋季: B2,B3,B4,B8,B5,B6,B7,B8A,B11,B12,NDVI,EVI,NDBI,NDWI,LSWI,NDRI,RRI
冬季: B4,B8,B5,B6,B7,B8A,B11,B12,NDVI,NDBI,NDWI,LSWI,NDRI,RRI
Tab.4  特征优选结果
特征 OA/% Kappa系数
所有特征 94.20 0.927 6
RF 94.97 0.937 1
Relief-F 95.10 0.939 0
综合优选 95.36 0.942 1
Tab.5  综合特征优选的有效性
Fig.7  特征优选对不同模型的效果
[1] Qian T N, Bagan H, Kinoshita T, et al. Spatial-temporal analyses of surface coal mining dominated land degradation in Holingol,Inner Mongolia[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5):1675-1687.
[2] Sonter L J, Herrera D, Barrett D J, et al. Mining drives extensive deforestation in the Brazilian Amazon[J]. Nature Communications, 2017, 8(1):1013.
[3] Chen W T, Li X J, Wang L Z. Fine land cover classification in an open pit mining area using optimized support vector machine and WorldView-3 imagery[J]. Remote Sensing, 2019, 12(1):82.
[4] 张伟, 吴艳民, 刘吉凯. Landsat系列影像支持下的凤阳县石英砂矿区土地利用动态监测[J]. 测绘通报, 2018(6):91-97.
Zhang W, Wu Y M, Liu J K. Land use dynamic monitoring of Fengyang quartz mine area based on landsat images[J]. Bulletin of Surveying and Mapping, 2018(6):91-97.
[5] Lavanya K, Gondchar A, Mathew I M, et al. Land cover classification using Landsat7 data for land sustainability[J]. Wireless Personal Communications, 2023, 132(1):679-697.
[6] Lobo F D L, Souza-Filho P W M, Novo E M L d M, et al. Mapping mining areas in the Brazilian Amazon using MSI/Sentinel-2 imagery (2017)[J]. Remote Sensing, 2018, 10(8):1178.
[7] 王德军, 姜琦刚, 李远华, 等. 基于Sentinel-2A/B时序数据与随机森林算法的农耕区土地利用分类[J]. 国土资源遥感, 2020, 32(4):236-243.doi:10.6046/gtzyyg.2020.04.29.
Wang D J, Jiang Q G, Li Y H, et al. Land use classification of farming areas based on time series Sentinel-2A/B data and random forest algorithm[J]. Remote Sensing for Land and Resources, 2020, 32(4):236-243.doi:10.6046/gtzyyg.2020.04.29.
[8] Yuh Y G, Tracz W, Matthews H D, et al. Application of machine learning approaches for land cover monitoring in northern Cameroon[J]. Ecological Informatics, 2023, 74:101955.
[9] Alshari E A, Abdulkareem M B, Gawali B W. Classification of land use/land cover using artificial intelligence (ANN-RF)[J]. Frontiers in Artificial Intelligence, 2023, 5:964279.
[10] Park J, Lee Y, Lee J. Assessment of machine learning algorithms for land cover classification using remotely sensed data[J]. Sensors and Materials, 2021, 33(11):3885-3902.
[11] Rawat S, Saini R. Evaluating the impact of sampling designs on the performance of machine learning techniques for land use land cover classification using Sentinel-2 data[J]. International Journal of Remote Sensing, 2023, 44(24):7889-7908.
[12] Arrechea-Castillo D A, Solano-Correa Y T, Muñoz-Ordóñez J F, et al. Multiclass land use and land cover classification of Andean sub-basins in Colombia with sentinel-2 and deep learning[J]. Remote Sensing, 2023, 15(10):2521.
[13] Zhou G D, Xu J H, Chen W T, et al. Deep feature enhancement method for land cover with irregular and sparse spatial distribution features:A case study on open-pit mining[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:1-20.
[14] 胡云锋, 商令杰, 张千力, 等. 基于GEE平台的1990年以来北京市土地变化格局及驱动机制分析[J]. 遥感技术与应用, 2018, 33(4):573-583.
Hu Y F, Shang L J, Zhang Q L, et al. Land change patterns and driving mechanism in Beijing since 1990 based on GEE platform[J]. Remote Sensing Technology and Application, 2018, 33(4):573-583.
[15] Zeng H W, Wu B F, Wang S, et al. A synthesizing land-cover classification method based on Google Earth Engine:A case study in nzhelele and levhuvu catchments,South Africa[J]. Chinese Geographical Science, 2020, 30(3):397-409.
[16] 毛丽君, 李明诗. GEE环境下联合Sentinel主被动遥感数据的国家公园土地覆盖分类[J]. 武汉大学学报(信息科学版), 2023, 48(5):756-764.
Mao L J, Li M S. Integrating sentinel active and passive remote sensing data to land cover classification in a National Park from GEE platform[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5):756-764.
[17] 陈彦四, 黄春林, 侯金亮, 等. 基于多时相Sentinel-2影像的黑河中游玉米种植面积提取研究[J]. 遥感技术与应用, 2021, 36(2):324-331.
Chen Y S, Huang C L, Hou J L, et al. Extraction of maize planting area based on multi-temporal sentinel-2 imagery in the middle reaches of Heihe River[J]. Remote Sensing Technology and Application, 2021, 36(2):324-331.
[18] Huete A, Didan K, Miura T, et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices[J]. Remote Sensing of Environment, 2002, 83(1/2):195-213.
[19] Xu H Q. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006, 27(14):3025-3033.
[20] Xiao X M, Hollinger D, Aber J, et al. Satellite-based modeling of gross primary production in an evergreen needleleaf forest[J]. Remote Sensing of Environment, 2004, 89(4):519-534.
[21] Zha Y, Gao J, Ni S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery[J]. International Journal of Remote Sensing, 2003, 24(3):583-594.
[22] 吴宏安, 蒋建军, 张海龙, 等. 比值居民地指数在城镇信息提取中的应用[J]. 南京师大学报(自然科学版), 2006, 29(3):118-121.
Wu H A, Jiang J J, Zhang H L, et al. Application of ratio resident-area index to retrieve urban residential areas based on landsat TM data[J]. Journal of Nanjing Normal University (Natural Science), 2006, 29(3):118-121.
[23] 张晓伦, 甘淑. 基于NDRI像元二分模型的石漠化信息提取研究[J]. 新技术新工艺, 2014(1):72-75.
Zhang X L, Gan S. Research on extracting rocky desertification information based on NDRI dimidiate pixel model[J]. New Technology and New Process, 2014(1):72-75.
[24] 霍轩琳, 牛振国, 张波, 等. 高寒湿地分类的遥感特征优选研究[J]. 遥感学报, 2023, 27(4):1045-1060.
Huo X L, Niu Z G, Zhang B, et al. Remote sensing feature selection for alpine wetland classification[J]. National Remote Sensing Bulletin, 2023, 27(4):1045-1060.
[25] 刘吉超, 王锋. 基于Relief-F的半监督特征选择算法[J]. 郑州大学学报(理学版), 2021, 53(1):42-46,53.
Liu J C, Wang F. A semi-supervised feature selection algorithm based on relief-F[J]. Journal of Zhengzhou University (Natural Science Edition), 2021, 53(1):42-46,53.
[26] Liao Q T. Intelligent classification model of land resource use using deep learning in remote sensing images[J]. Ecological Modelling, 2023, 475:110231.
[27] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).June 27-30,2016,Las Vegas,NV,USA.IEEE, 2016:770-778.
[28] 张立亭, 夏文生, 罗亦泳, 等. 改进双重注意力机制结合ResNet50的遥感图像分类[J]. 测绘科学, 2023, 48(4):98-105.
Zhang L T, Xia W S, Luo Y Y, et al. Improved double attention mechanism combined with ResNet50 for remote sensing image classification[J]. Science of Surveying and Mapping, 2023, 48(4):98-105.
[29] Dastour H, Hassan Q K. A comparison of deep transfer learning methods for land use and land cover classification[J]. Sustainability, 2023, 15(10):7854.
[30] Sawant S, Ghosh J K. Land use land cover classification using Sentinel imagery based on deep learning models[J]. Journal of Earth System Science, 2024, 133(2):101.
[1] 肖明珠, 李培军. 利用Sentinel-2光谱指数和改进的单类随机森林的塑料大棚提取方法[J]. 自然资源遥感, 2025, 37(4): 40-47.
[2] 邓建明, 姚航, 付波霖, 顾森, 唐婕, 甘园园. 基于GEE和时序主被动影像的广西北部湾红树林时空动态监测研究[J]. 自然资源遥感, 2025, 37(2): 235-245.
[3] 陈多妍, 史岚. 基于随机森林的降水产品降尺度及其水文适用性评估[J]. 自然资源遥感, 2025, 37(2): 66-79.
[4] 牛全福, 雷姣姣, 刘博, 王浩, 张瑞珍, 王刚. Sentinel-1/2影像在兰州北山削山造地范围识别中的应用[J]. 自然资源遥感, 2025, 37(1): 142-151.
[5] 李钰彬, 王宗明, 赵传朋, 贾明明, 任春颖, 毛德华, 于皓. 辽河口盐地碱蓬时空动态遥感监测及其识别机理研究[J]. 自然资源遥感, 2025, 37(1): 195-203.
[6] 范莹琳, 杜松, 赵岳, 邱景智, 杜晓川, 张玉峰, 丁晏, 宋思彤, 车巧慧. 基于随机森林算法的煤矸石山信息提取[J]. 自然资源遥感, 2025, 37(1): 54-61.
[7] 刘永新, 张思源, 边鹏, 王丕军, 袁帅. 1989—2020年黄河流域巴彦淖尔段地表覆盖类型时空演变研究[J]. 自然资源遥感, 2024, 36(2): 207-217.
[8] 冯倩, 张佳华, 邓帆, 吴贞江, 赵恩灵, 郑培鑫, 韩杨. 基于特征优选和时空融合算法的黄河三角洲湿地类别制图方法研究[J]. 自然资源遥感, 2024, 36(2): 39-49.
[9] 刘美艳, 聂胜, 王成, 习晓环, 程峰, 冯宝坤. 基于ICESat-2和Sentinel-2A数据的森林蓄积量反演[J]. 自然资源遥感, 2024, 36(1): 210-216.
[10] 卢献健, 张焕铃, 晏红波, 黎振宝, 郭子扬. 协同Sentinel-1/2多特征优选的甘蔗提取方法[J]. 自然资源遥感, 2024, 36(1): 86-94.
[11] 杜晓川, 娄德波, 徐林刚, 范莹琳, 张琳, 李婉悦. 基于GF-2影像和随机森林算法的花岗伟晶岩提取[J]. 自然资源遥感, 2023, 35(4): 53-60.
[12] 余绍淮, 徐乔, 余飞. 联合光学和SAR遥感影像的山区公路滑坡易发性评价方法[J]. 自然资源遥感, 2023, 35(4): 81-89.
[13] 钟骁勇, 李洪义, 郭冬艳, 谢模典, 赵婉如, 胡碧峰. 基于多源环境变量和随机森林模型的江西省耕地土壤pH值空间预测[J]. 自然资源遥感, 2023, 35(4): 178-185.
[14] 何苏玲, 贺增红, 潘继亚, 王金亮. 基于多模型的县域土地利用/土地覆盖模拟[J]. 自然资源遥感, 2023, 35(4): 201-213.
[15] 陈健, 李虎, 刘玉锋, 常竹, 韩伟杰, 刘赛赛. 基于Sentinel-2数据多特征优选的农作物遥感识别研究[J]. 自然资源遥感, 2023, 35(4): 292-300.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
版权所有 © 2015 《自然资源遥感》编辑部
地址:北京学院路31号中国国土资源航空物探遥感中心 邮编:100083
电话:010-62060291/62060292 E-mail:zrzyyg@163.com
本系统由北京玛格泰克科技发展有限公司设计开发