Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2008, Vol. 20 Issue (4) : 53-57     DOI: 10.6046/gtzyyg.2008.04.13
Technology Application |
THE ASSESSMENT OF TRAFFIC ENVIRONMENTAL QUALITY OF THE URBAN RESIDENTIAL UNIT BASED ON HIGH RESOLUTION REMOTE SENSING: A CASE STUDY OF XIAMEN CITY
CHEN Zhi-hao
Xiamen Environment Information Center,Xiamen 361000, China
Download: PDF(752 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The urban residential unit is intimately related to people's life, and the traffic environment of  a

residential unit constitutes a key standard for the environment assessment of the unit. The spatial resolution of

the high-resolution remote sensing image makes it possible to study the traffic environment on the scale of the

urban residential unit. According to characteristics of the high-resolution image, a multi-level index system for

the assessment of traffic environment of urban residential units was constructed, which took into account the

traffic environment and road accessibility. In this paper 50 representative urban residential units in Xiamen City

were chosen and all the indices mentioned above were computed and further analyzed. The results indicate that the

utilization of the high resolution image for the assessment of city traffic environment quality is an economical,

simple and feasible method.

Keywords TM data      Land use      Change monitoring     
Issue Date: 23 June 2009
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Cite this article:   
CHEN Zhi-Hao. THE ASSESSMENT OF TRAFFIC ENVIRONMENTAL QUALITY OF THE URBAN RESIDENTIAL UNIT BASED ON HIGH RESOLUTION REMOTE SENSING: A CASE STUDY OF XIAMEN CITY[J]. REMOTE SENSING FOR LAND & RESOURCES,2008, 20(4): 53-57.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2008.04.13     OR     https://www.gtzyyg.com/EN/Y2008/V20/I4/53
[1] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[2] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[3] WU Jiang, LIU Chun, YING Shen, YU Ting. Spatial delineation methods of urban areas[J]. Remote Sensing for Natural Resources, 2021, 33(4): 89-97.
[4] WANG Qingchuan, XI Yantao, LIU Xinran, ZHOU Wen, XU Xinran. Spatial-temporal response of ecological service value to land use change: A case study of Xuzhou City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 219-228.
[5] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[6] XIAO Dongsheng, LIAN Hong. Population spatialization based on geographically weighted regression model considering spatial stability of parameters[J]. Remote Sensing for Natural Resources, 2021, 33(3): 164-172.
[7] DENG Xiaojin, JING Changqing, GUO Wenzhang, Yan Yujiang, CHEN Chen. Surface albedos of different land use types in the Junggar Basin[J]. Remote Sensing for Natural Resources, 2021, 33(3): 173-183.
[8] SONG Qi, FENG Chunhui, GAO Qi, WANG Mingyue, WU Jialin, PENG Jie. Change of cultivated land and its driving factors in Alar reclamation area in the past thirty years[J]. Remote Sensing for Land & Resources, 2021, 33(2): 202-212.
[9] HU Suliyang, LI Hui, GU Yansheng, HUANG Xianyu, ZHANG Zhiqi, WANG Yingchun. An analysis of land use changes and driving forces of Dajiuhu wetland in Shennongjia based on high resolution remote sensing images: Constraints from the multi-source and long-term remote sensing information[J]. Remote Sensing for Land & Resources, 2021, 33(1): 221-230.
[10] WANG Dejun, JIANG Qigang, LI Yuanhua, GUAN Haitao, ZHAO Pengfei, XI Jing. Land use classification of farming areas based on time series Sentinel-2A/B data and random forest algorithm[J]. Remote Sensing for Land & Resources, 2020, 32(4): 236-243.
[11] GAO Wenlong, SU Tengfei, ZHANG Shengwei, DU Yinlong, LUO Meng. Classification of objects and LUCC dynamic monitoring in mining area: A case study of Hailiutu watershed[J]. Remote Sensing for Land & Resources, 2020, 32(3): 232-239.
[12] Hailing GU, Chao CHEN, Ying LU, Yanli CHU. Construction of regional economic development model based on satellite remote sensing technology[J]. Remote Sensing for Land & Resources, 2020, 32(2): 226-232.
[13] Ruiqi GUO, Bo LU, Kailin CHEN. Dynamic simulation of multi-scenario land use change based on CLUMondo model: A case study of coastal cities in Guangxi[J]. Remote Sensing for Land & Resources, 2020, 32(1): 176-183.
[14] Xuewen XING, Song LIU, Kaijun QIAN. Study of relationship between thickness of oil slicks and band reflectance of Landsat TM/ETM[J]. Remote Sensing for Land & Resources, 2019, 31(4): 69-78.
[15] Haiping WU, Shicun HUANG. Research on new construction land information extraction based on deep learning: Innovation exploration of the national project of land use monitoring via remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 159-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech