Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2011, Vol. 23 Issue (4) : 58-63     DOI: 10.6046/gtzyyg.2011.04.11
Technology and Methodology |
Land Cover Classification Using ALOS Image Based on Textural Features and Support Vector Machine
LI Ling1, WANG Hong1, LIU Qing-sheng2, NING Ji-cai2
1. School of Earth Sciences and Engineering, Hehai University, Nanjing 210098, China;
2. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
Download: PDF(3060 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The high spatial resolution remote sensing images are used widely in the land cover classification; nevertheless, the traditional pixel-based classification has the weakness of relatively low accuracy. For the purpose of improving the accuracy of the high spatial resolution image classification,the textural features were extracted quickly by using the method of Gray Level Co-occurrence Matrices (GLCM),and then the ALOS image of the typical test area in Huzhou city of Zhejiang province was classified based on textural features and Support Vector Machine (SVM). The results show that image classification based on textural features and SVM can better extract surface features with precision of 90.88%. The classification precision based on SVM only is higher than that based on maximum likelihood,with the former precision being 89.96% and the latter 86.16%. Extracting land cover types quickly and accurately can provide a service for the research on appearance and spatial-temporal distribution of the agricultural non-point pollution source,and also provide scientific evidence for exploration of reasonable land use model and sustainable land utilization in Taihu basin.

Keywords BJ-1 micro-satellite (BJ-1)      Land use/cover      Change detection      Mining area      Change vector analysis     
:  TP 751.1  
Issue Date: 16 December 2011
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Yu
DU Pei-jun
TANG Wei-cheng
LIU Si-cong
Cite this article:   
CHEN Yu,DU Pei-jun,TANG Wei-cheng, et al. Land Cover Classification Using ALOS Image Based on Textural Features and Support Vector Machine[J]. REMOTE SENSING FOR LAND & RESOURCES, 2011, 23(4): 58-63.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2011.04.11     OR     https://www.gtzyyg.com/EN/Y2011/V23/I4/58



[1] 张维理,武淑霞,冀宏杰,等.中国农业面源污染形势估计及控制对策Ⅰ--21世纪初期中国农业面源污染的形势估计[J].中国农业科学,2004,37(7):1008-1017.





[2] 姜青香,刘慧平.利用纹理分析方法提取TM图像信息[J].遥感学报,2004,8(5):458-464.





[3] 陈启浩,高伟,刘修国.辅以纹理特征的高分辨率遥感影像分类[J].测绘科学,2008,33(1):88-90.





[4] Chavez P Jr,Bauer B.An Automatic Optimum Kernel-size Selection Technique for Edge Enhancement[J].Remote Sensing of Environment,1982(1),12:23-38.





[5] Franklin S E,McDemid G J.Empirical Relations Between Digital SPOT HRV and CASI Spectral Response and Lodgepole Pine (Pinas Contorta) Forest Stand Parameters[J].International Jounal of Remote Sensing,1993,14(12):2331-2348.





[6] Franklin S E,Wukler M A,Lavingne M B.Automated Derivation of Geographic Window Sizes for Use in Remote Sensing Digital Image Texture Analysis[J].Computers & Geosciences,1996,22(6):665-673.





[7] Curran P J.The Semivariogram in Remote Sensing:an Introduction[J].Remote Sensing of Environment,1988,24(3):493-507.





[8] Marceau D J,Howarth P J,Dubois J M,et al.Evaluation of the Grey-level Co-occurrence Matrix Method for Land-cover Classification Using SPOT Imagery[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(4):513-519.





[9] Hsu S.Texture-tone Analysis for Automated Land-use Mapping[J].Photogrammetric Engineering & Remote Sensing,1978,44(11):1393-1404.





[10] Dutra L V,Mascarenhas N D A.Some Experiments with Spatial Feature Extraction Methods in Multispectral Classification[J].International Journal of Remote Sensing,1984,5(2):303-313.





[11] 黄颖端,李培军,李争晓.基于地统计学的图像纹理在岩性分类中的应用[J].国土资源遥感,2003(3):45-49.





[12] Hallo,Hay G J,Marceau D J.Multiscale Object-specific Analysis Scale Problems and Multiscale Solutions[C]//Proceedings of 12th International Conference on Geoinfomatics-Geospatial Information Research:Bridging the Pacific and Atlantic.Sweden:Press of University of Gävele,2004.





[13] 宋翠玉,李培军,杨锋杰.运用多尺度图像纹理进行城市扩展变化检测[J].国土资源遥感,2006(3):37-42.





[14] Zhu G B,Blumberg D G.Classification Using ASTER Data and SVM Algorithms:the Case Study of Beer Sheva,Israel[J].Remote Sensing of Environment,2002,80(2):233-240.





[15] Keuchel J,Naumann S,Heiler M,et al.Automatic Land Cover Analysis for Tenerife by Supervised Classification Using Remotely Sensed Data[J].Remote Sensing of Environment,2003,86(4):530-541.





[16] Nemmour H,Chibani Y.Multiple Support Vector Machines for Land Cover Change Detection:an Application for Mapping Urban Extensions[J].ISPRS Journal of Photogrammentry and Remote Sensing,2006,61(2):125-133.





[17] Inglada J.Automatic Recognition of Man-made Objects in High Resolution Optical Remote Sensing Images by SVM Classification of Geometric Image Features[J].ISPRS Journal of Photogrammetry and Remote Sensing,2007,62(3):236-248.





[18] 刘龙飞,陈云浩,李京.遥感影像纹理分析方法综述与展望[J].遥感技术与应用,2003,18(6):441-447.





[19] Haralick R M,Shanmugan K,Dinsrein I.Textural Features for Image Classification[J].IEEE Trans actions on Man and Cybern etics,1973,3(6):610-621.





[20] 冯建辉,杨玉静.基于灰度共生矩阵提取纹理特征图像的研究[J].北京测绘,2007(3):19-22.





[21] Cristianini N,Shawe-Taylon J.支持向量机导论[M].北京:电子工业出版社,2006.





[22] 张睿,马建文.改进的P-SVM支持向量机与遥感数据分类[J].遥感学报,2009,13(3):445-452.





[23] 张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):37-38.

[1] YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 177-188.
[2] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[3] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[4] LI Mengmeng, FAN Xueting, CHEN Chao, LI Qiannan, YANG Jin. Monitoring and interpretation of land subsidence in mining areas in Xuzhou City during 2016—2018[J]. Remote Sensing for Natural Resources, 2021, 33(4): 43-54.
[5] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[6] WANG Yiuzhu, HUANG Liang, CHEN Pengdi, LI Wenguo, YU Xiaona. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 89-96.
[7] SONG Qi, FENG Chunhui, GAO Qi, WANG Mingyue, WU Jialin, PENG Jie. Change of cultivated land and its driving factors in Alar reclamation area in the past thirty years[J]. Remote Sensing for Land & Resources, 2021, 33(2): 202-212.
[8] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[9] XU Rui, YU Xiaoyu, ZHANG Chi, YANG Jin, HUANG Yu, PAN Jun. Building change detection method combining Unet and IR-MAD[J]. Remote Sensing for Land & Resources, 2020, 32(4): 90-96.
[10] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[11] Chunsen ZHANG, Rongrong WU, Guojun LI, Weihong CUI, Chenyi FENG. High resolution remote sensing image object change detection based on box-plot method[J]. Remote Sensing for Land & Resources, 2020, 32(2): 19-25.
[12] Yuting YANG, Hailan CHEN, Jiaqi ZUO. Remote sensing monitoring of impervious surface percentage in Hangzhou during 1990—2017[J]. Remote Sensing for Land & Resources, 2020, 32(2): 241-250.
[13] Guoce SONG, Zhi ZHANG. Remote sensing monitoring method for dust and wind accumulation in multi-metal mining area of Xin Barag Right Banner,Inner Mongolia[J]. Remote Sensing for Land & Resources, 2020, 32(2): 46-53.
[14] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[15] Yizhi LIU, Huarong LAI, Dingwang ZHANG, Feipeng LIU, Xiaolei JIANG, Qing’an CAO. Change detection of high resolution remote sensing image alteration based on multi-feature mixed kernel SVM model[J]. Remote Sensing for Land & Resources, 2019, 31(1): 16-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech