Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2013, Vol. 25 Issue (1) : 130-136     DOI: 10.6046/gtzyyg.2013.01.23
Technology Application |
Evolution analysis of Chongming Dongtan wetland in recent 60 years based on digital nautical chart and remote sensing
ZHENG Zongsheng1, ZHOU Yunxuan2, TIAN Bo2, JIANG Xiaoyi3, LIU Zhiguo4
1. College of Information, Shanghai Ocean University, Shanghai 201306, China;
2. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China;
3. National Marine Data and Information Service, Tianjin 300171, China;
4. East Sea Information Center, State Oceanic Administration, Shanghai 200137, China
Download: PDF(3059 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The spatial variation of Chongming Dongtan wetland was monitored using 10 remote sensing images including Landsat MSS, TM and ETM+ data. Nine nautical charts were employed to analyze the evolution of underwater terrain from 1951 to 2006. With the above/under water topographic changes as an entirety, the authors made quantitative and qualitative analysis of geomorphic evolution in the past 60 years at Chongming Dongtan wetland using waterline method and depth contour overlaying. Some conclusions have been reached: ① The dynamics of Chongming Dongtan tend to be stable, characterized by erosion in the south part, deposition in the north, rapid propagation in the middle and alternate erosion and deposition in some coasts under the stabilities of the current Yangtze estuary; ② Human activities made important effect on the wetland. Especially, damn in the Baigang tidal channel accelerated deposition in the wetland. Then the 0 m isobath expanded to the east at a stable rate. Although the wetland area was increasing with the human reclamation year by year, the inter-tidal structure of wetland was deviated from the nature state. The proportion of high tidal flat was decreasing and it showed discontinuous spatial distribution at Chongming Dongtan. Because the damn was directly exposed to the outside marine environment, it would reduce the capability of disaster weather prevention.

Keywords thermal inertia      soil water content      MODIS      NDVI     
:  TP79  
Issue Date: 21 February 2013
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Li
ZHANG Youzhi
XIE Wenhuan
LI Yan
YANG Shucong
Cite this article:   
WU Li,ZHANG Youzhi,XIE Wenhuan, et al. Evolution analysis of Chongming Dongtan wetland in recent 60 years based on digital nautical chart and remote sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(1): 130-136.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2013.01.23     OR     https://www.gtzyyg.com/EN/Y2013/V25/I1/130
[1] 周鑫,左平,滕厚峰,等.基于土地利用变化的生态系统服务价值核算——以江苏盐城滨海湿地为例[J].海洋通报,2011,30(6):656-661. Zhou X,Zuo P,Teng H F,et al.Estimation of ecosystem service values based on land use changes:A case study of Yancheng coastal wetlands[J].Marine Science Bulletin,2011,30(6):656-661.
[2] 马仲荃,严蔚芸,曹豪.彩色红外航空摄影在海涂调查中的应用——以杭州湾上海岸段遥感为例[J].海洋通报,1989,6(4):64-69. Ma Z Q,Yan W Y,Cao H.The application of color infrared aerial photography to the investigation of tidal wetland in the Shanghai section of the Hangzhou Bay[J].Marine Science Bulletin,1989,6(4):64-69.
[3] 王贵明,董裕国.珠江韩江三角洲海岸变迁遥感解译对比研究[J].海洋科学,1997(4):50-53. Wang G M,Dong Y G.Interpretation and study of remote sensing of coastal-line migration in the Pearl River and the Hanjiang River Delta[J].Marine Sciences,1997(4):50-53.
[4] Blodget H W,Taylor P T,Roark J H.Shoreline changes along the Rosetta-Nile promontory: Monitoring with satellite observations[J].Marine Geology,1991,99(1/2):67-77.
[5] 冯永玖,刘丹,韩震.遥感和GIS支持下的九段沙岸线提取及变迁研究[J].国土资源遥感,2012,24(1):65-69. Feng Y J,Liu D,Han Z.Shoreline extraction and change analysis of the Jiuduansha islands with the support of remote sensing and GIS technologies[J].Remote Sensing for Land and Resources,2012,24(1):65-69.
[6] 宋启帆,王少军,张志,等.基于WorldView Ⅱ图像的钨矿区水体信息提取方法研究[J].国土资源遥感,2012,24(2):33-37. Song Q F,Wang S J,Zhang Z,et al.A water information extraction method based on WorldView Ⅱ remote sensing image in tungsten ore districts[J].Remote Sensing for Land and Resources,2012,24(2):33-37.
[7] 陈蕾,邓孺孺,陈启东,等.基于水质类型的TM图像水体信息提取[J].国土资源遥感,2012,24(1):90-94. Chen L,Deng R R,Chen Q D,et al.The extraction of water body information from TM imagery based on water quality types[J].Remote Sensing for Land and Resources,2012,24(1):90-94.
[8] 庞家珍,姜明星,李福林.黄河口径流、泥沙、海岸线变化及其发展趋势[J].海洋湖沼通报,2000(4):1-6. Pang J Z,Jiang M X,Li F L.Changes and development trend of runoff,sediment discharge and coastline of the Yellow River estuary[J].Transaction of Oceanology and Limnology,2000(4):1-6.
[9] 黄海军,樊辉.1976年黄河改道以来三角洲近岸区变化遥感监测[J].海洋与湖沼,2004,35(4):306-314. Huang H J,Fan H.Monitoring changes of nearshore zones in the Huanghe(Yellow River)delta since 1976[J].Oceanologia Et Limnologia Sinica,2004,35(4):306-314.
[10] Mason D C,Davenport I,Flather R A.Interpolation of an intertidal digital elevation model from heighted shorelines:A case study in the western wash[J].Estuarine,Coastal and Shelf Science,1997,45(5):599-612.
[11] Mason D C,Davenport I,Flather R A,et al.A digital elevation model of the intertidal areas of the wash produced by the waterline method[J].International Journal of Remote Sensing,1998,19(8):1455-1460.
[12] Mason D C,Amin M,Davenport I J,et al.Measurement of recent intertidal sediment transport in Morecambe Bay using the waterline method[J].Estuarine,Coastal and Shelf Science,1999,49(3):427-456.
[13] Chen L C,Rau J Y.Detection of shoreline changes for tideland areas using multi-temporal satellite images[J].International Journal of Remote Sensing,1998,19(17):3383-3397.
[14] 韩震,恽才兴.伶仃洋大铲湾潮滩冲淤遥感反演研究[J].海洋学报,2003,25(5):58-64. Han Z,Yun C X.Deposition and erosion remote-sensing reverse of Dachan Bay beach in Lingdingyang Estuary[J].Acta Oceanologica Sinica,2003,25(5):58-64.
[15] 杨世伦,朱骏,赵庆英.长江供沙量减少对水下三角洲发育影响的初步研究[J].海洋学报,2003,25(5):83-91. Yang S L,Zhu J,Zhao Q Y.A preliminary study on the influence of Changjiang River sediment supply on subaqueous delta [J]. Acta Oceanologica Sinica,2003,25(5):83-91.
[16] 刘清玉,戴雪荣,何小勤.崇明东滩沉积环境探讨[J].海洋地质动态,2003,19(12):1-4. Liu Q Y,Dai X R,He X Q.The sedimentary environment of the east tidal flat of the Chongming island[J].Marine Geology Letters,2003,19(12):1-4.
[17] 赵云龙,安传光,林凌,等.放牧对滩涂底栖动物的影响[J].应用生态学报,2007,18(5):1086-1090. Zhao Y L,An C G,Lin L,et al.Effects of grazing on zoobenthos community in beach[J].Chinese Journal of Applied Ecology,2007,18(5):1086-1090.
[18] 高宇,王卿,何美梅,等.滩涂作业对上海崇明东滩自然保护区的影响评价[J].生态学报,2007,27(9):3752-3760. Gao Y,Wang Q,He M M.To evaluate the impact of economic activities on the mudflats of Chongming Dongtan birds nature reserve,Shanghai[J].Acta Ecologica Sinica,2007,27(9):3752-3760.
[19] 赵书河,冯学智,赵锐.中巴资源一号卫星南京幅数据质量与几何纠正评价[J].遥感技术与应用,2000,15(3):170-174. Zhao S H,Feng X Z,Zhao R.Evaluation on data quality and geometric correction of China-Brazil resources satellite No.1 data in Nanjing area[J].Remote Sensing Technology and Application,2000,15(3):170-174.
[20] 韩涛.在1:25万电子地图辅助下的TM影像精校正研究[J].遥感技术与应用,2003,18(1):6-9. Han T.Research for geometrical correction of TM image based on 1:250 000 digital map[J].Remote Sensing Technology and Application,2003,18(1):6-9.
[21] 徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,9(5):589-595. Xu H Q.A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J].Journal of Remote Sensing,2005,9(5):589-595.
[22] 杨存建,周成虎.基于知识发现的TM图像居民地自动提取研究[J].遥感技术与应用,2001,16(1):1-6. Yang C J,Zhou C H.Extracting residential area from TM image on the basis of knowledge discovered[J].Remote Sensing Technology and Application,2001,16(1):1-6.
[23] 郑宗生,周云轩,蒋雪中,等.崇明东滩水边线信息提取与潮滩DEM的建立[J].遥感技术与应用,2007,22(1):35-38. Zheng Z S,Zhou Y X,Jiang X Z,et al.Waterline extraction and DEM reconstruction in Chongming Dongtan[J].Remote Sensing Technology and Application,2007,22(1):35-38.
[24] 郑宗生,周云轩,刘志国,等.基于水动力模型及遥感水边线方法的潮滩高程反演[J].长江流域资源环境,2008,17(5):763-767. Zheng Z S,Zhou Y X,Liu Z G,et al.Dem reconstruction based on hydrodynamic model and waterline method[J].Resources and Environment in the Yangtze Basin,2008,17(5):763-767.
[1] SHI Feifei, GAO Xiaohong, XIAO Jianshe, LI Hongda, LI Runxiang, ZHANG Hao. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1): 115-126.
[2] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[3] ZHANG Aizhu, WANG Wei, ZHENG Xiongwei, YAO Yanjuan, SUN Genyun, XIN Lei, WANG Ning, HU Guang. A hierarchical spatial-temporal fusion model[J]. Remote Sensing for Natural Resources, 2021, 33(3): 18-26.
[4] WEI Geng, HOU Yuqiao, ZHA Yong. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic[J]. Remote Sensing for Natural Resources, 2021, 33(3): 238-245.
[5] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[6] SONG Chengyun, HU Guangcheng, WANG Yanli, TANG Chao. Downscaling FY-3B soil moisture based on apparent thermal inertia and temperature vegetation index[J]. Remote Sensing for Land & Resources, 2021, 33(2): 20-26.
[7] WEI Geng, HOU Yuqiao, HAN Jiamei, ZHA Yong. The estimation of PM2.5 mass concentration based on fine-mode aerosol and WRF model[J]. Remote Sensing for Land & Resources, 2021, 33(2): 66-74.
[8] CHEN Baolin, ZHANG Bincai, WU Jing, LI Chunbin, CHANG Xiuhong. Historical average method used in MODIS image pixel cloud compensation: Exemplified by Gansu Province[J]. Remote Sensing for Land & Resources, 2021, 33(2): 85-92.
[9] DU Fangzhou, SHI Yuli, SHENG Xia. Research on downscaling of TRMM precipitation products based on deep learning: Exemplified by northeast China[J]. Remote Sensing for Land & Resources, 2020, 32(4): 145-153.
[10] YANG Huan, DENG Fan, ZHANG Jiahua, WANG xueting, MA Qingxiao, XU Nuo. A study of information extraction of rape and winter wheat planting in Jianghan Plain based on MODIS EVI[J]. Remote Sensing for Land & Resources, 2020, 32(3): 208-215.
[11] Gang DENG, Zhiguang TANG, Chaokui LI, Hao CHEN, Huanhua PENG, Xiaoru WANG. Extraction and analysis of spatiotemporal variation of rice planting area in Hunan Province based on MODIS time-series data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 177-185.
[12] Kailun JIN, Lu HAO. Evapotranspiration estimation in the Jiangsu-Zhejiang-Shanghai Area based on remote sensing data and SEBAL model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 204-212.
[13] Biqing WANG, Wenquan HAN, Chi XU. Winter wheat planting area identification and extraction based on image segmentation and NDVI time series curve classification model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 219-225.
[14] Bing ZHAO, Kebiao MAO, Yulin CAI, Xiangjin MENG. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land & Resources, 2020, 32(2): 233-240.
[15] Guoce SONG, Zhi ZHANG. Remote sensing monitoring method for dust and wind accumulation in multi-metal mining area of Xin Barag Right Banner,Inner Mongolia[J]. Remote Sensing for Land & Resources, 2020, 32(2): 46-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech