Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2014, Vol. 26 Issue (2) : 190-195     DOI: 10.6046/gtzyyg.2014.02.30
|
Data acquisition mechanism of international Charter based on disaster events and processes
HE Haixia1, CHEN Weitao2, WU Wei1, LI Yafei3
1. National Disaster Reduction Center and Satellite Disaster Reduction Application Center, Beijing 100124, China;
2. College of Computer Science and Department for Geodynamics and Deep Space Exploration of NRSCC, China University of Geosciences(Wuhan), Wuhan 430074, China;
3. School of Land Science and Technology, China University of Geosciences(Beijing), Beijing 100083, China
Download: PDF(811 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  The development,activation,operating mechanism and data policy of international Charter were described in this paper. The activation and application cases aimed at investigating the disaster in China were analyzed. Then the main problems existent in Charter were summarized in the situation of concurrent multi-disaster and frequent severe disaster, which include the lack of activation condition and uniform operation system, the insufficient thematic data service, and the imperfect intellectual space databases system. These problems have led to the low efficiency in data acquisition, simple data type, and lower degree of automation. In order to solve these problems, this paper presented a dynamic and automatic data acquisition program aimed at the specific target, which can release time window constrains during the different disaster events and disaster processes. The results indicated that this program can pay more attention to the satellite scheduling and users' needs so as to ensure the timeliness and accuracy of multi-source data acquisition and avoid the data redundancy.
Keywords MODIS      night time radiation fog      Santa Barbara DISORT atmospheric radiative transfer(SBDART)      brightness temperature difference(BTD)      dynamic monitoring     
:  TP79  
Issue Date: 28 March 2014
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Weikang
MA Huiyun
ZOU Zhengrong
HE Zhuochen
ZHAO Guoqing
Cite this article:   
ZHANG Weikang,MA Huiyun,ZOU Zhengrong, et al. Data acquisition mechanism of international Charter based on disaster events and processes[J]. REMOTE SENSING FOR LAND & RESOURCES, 2014, 26(2): 190-195.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2014.02.30     OR     https://www.gtzyyg.com/EN/Y2014/V26/I2/190
[1] Tralli D M,Blom R G,Zlotnicki V,et al.Satellite remote sensing of earthquake,volcano,flood,landslide and coastal inundation hazards[J].Journal of Photogrammetry and Remote Sensing,2005,59(4):185-198.
[2] Joyce K E,Belliss S E,Samsonov S V,et al.A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters[J].Progress in Physical Geo- graphy,2009,33(2):183-207.
[3] Gitas I Z,Polychronaki A,Katagis T,et al.Contribution of remote sensing to disaster management activities:A case study of the large fires in the Peloponnese,Greece[J].International Journal of Remote Sensing,2008,29(6):1847-1853.
[4] Oštir K,Veljanovski T,Podobnikar T,et al.Application of satellite remote sensing in natural hazard management:The Mount Mangart landslide case study[J].International Journal of Remote Sensing,2003,24(20):3983-4002.
[5] Jha M N,Levy J,Gao Y.Advances in remote sensing for oil spill disaster management:State-of-the-art sensors technology for oil spill surveillance[J].Sensors,2008,8(1):236-255.
[6] 李德仁,陈晓玲,蔡晓斌.空间信息技术用于汶川地震救灾[J].遥感学报,2008,12(6):841-851. Li D R,Chen X L,Cai X B.Spatial information techniques in rapid response to Wenchuan earthquake[J].Journal of Remote Sensing,2008,12(6):841-851.
[7] 范一大,杨思全,王磊,等.汶川地震应急监测评估方法研究[J].遥感学报,2008,12(6):858-864. Fan Y D,Yan S Q,Wang L,et al.Study on urgent monitoring and assessment in Wenchuan earthquake[J].Journal of Remote Sensing,2008,12(6):858-864.
[8] 和海霞,范一大,杨思全,等.航天光学遥感在自然灾害管理中应用能力评述[J].航天器工程,2012,21(4):117-122. He H X,Fan Y D,Yang S Q,et al.Review on application capability of space optical remote sensing for natural disaster management[J].Spacecraft Engineering,2012,21(4):117-122.
[9] 陶和平,刘斌涛,刘淑珍,等.遥感在重大自然灾害监测中的应用前景——以"5·12"汶川地震为例[J].山地学报,2008,26(3):276-279. Tao H P,Liu B T,Liu S Z,et al.Natural hazards monitoring using remote sensing:A case study of"5·12"Wenchuan earthquake[J].Journal of Mountain Science,2008,26(3):276-279.
[10] 杨思全,刘三超,吴玮,等.青海玉树地震遥感监测应用研究[J].航天器工程,2011(2):90-96. Yang S Q,Liu S C,Wu W,et al.Remote sensing applications in Qinghai Yushu earthquake monitoring and assessment[J].Spacecraft Engineering,2011(2):90-96.
[11] 童立强."5·12"汶川大地震极重灾区地震堰塞湖应急遥感调查[J].国土资源遥感,2008,20(3):61-63. Tong L Q.Emergency remote sensing investigation of barrier lakes at the quake center area caused by"5·12"Wenchuan strong earthquake[J].Remote Sensing for Land and Resources,2008,20(3):61-63.
[12] 李传荣,范一大,唐伶俐,等."空间与重大灾害"国际公约组织的作用、贡献与意义[J].遥感技术与应用,2008,23(3):360-364. Li C R,Fan Y D,Tang L L,et al.The function,contribution and signification about international charter"Space and major disasters"[J].Remote Sensing Technology and Application,2008,23(3):360-364.
[13] 刘晓路,高鹏,陈盈果,等.Charter机制下减灾卫星调度系统设计与实现[J].遥感学报,2010,14(5):1017-1028. Liu X L,Gao P,Chen Y G,et al.Design and implementation of scheduling system for disaster monitoring satellites of Charter mechanism[J].Journal of Remote Sensing,2010,14(5):1017-1028.
[14] 王秀梅.从《空间与重大灾害国际宪章》看空间技术与国际减灾合作[J].南京航空航天大学学报:社会科学版,2009,11(2):56-59,65. Wang X M.Analysis of space technology and international cooperation on disaster mitigation based on international Charter on space and major disasters[J].Journal of Nanjing University of Aeronautics and Astronautics:Social Sciences,2009,11(2):56-59,65.
[15] Activating the Charter[EB/OL].http://www.disasterscharter.org/web/charter/activate.
[1] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[2] ZHANG Aizhu, WANG Wei, ZHENG Xiongwei, YAO Yanjuan, SUN Genyun, XIN Lei, WANG Ning, HU Guang. A hierarchical spatial-temporal fusion model[J]. Remote Sensing for Natural Resources, 2021, 33(3): 18-26.
[3] WEI Geng, HOU Yuqiao, ZHA Yong. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic[J]. Remote Sensing for Natural Resources, 2021, 33(3): 238-245.
[4] LONG Zehao, ZHANG Tianyuan, XU Wei, QIN Qiming. Development of farmland drought remote sensing dynamic monitoring system based on Android[J]. Remote Sensing for Land & Resources, 2021, 33(2): 256-261.
[5] WEI Geng, HOU Yuqiao, HAN Jiamei, ZHA Yong. The estimation of PM2.5 mass concentration based on fine-mode aerosol and WRF model[J]. Remote Sensing for Land & Resources, 2021, 33(2): 66-74.
[6] CHEN Baolin, ZHANG Bincai, WU Jing, LI Chunbin, CHANG Xiuhong. Historical average method used in MODIS image pixel cloud compensation: Exemplified by Gansu Province[J]. Remote Sensing for Land & Resources, 2021, 33(2): 85-92.
[7] HU Guoqing, CHEN Donghua, LIU Congfang, XIE Yimei, LIU Saisai, LI Hu. Dynamic monitoring of urban black-odor water bodies based on GF-2 image[J]. Remote Sensing for Land & Resources, 2021, 33(1): 30-37.
[8] YANG Huan, DENG Fan, ZHANG Jiahua, WANG xueting, MA Qingxiao, XU Nuo. A study of information extraction of rape and winter wheat planting in Jianghan Plain based on MODIS EVI[J]. Remote Sensing for Land & Resources, 2020, 32(3): 208-215.
[9] Gang DENG, Zhiguang TANG, Chaokui LI, Hao CHEN, Huanhua PENG, Xiaoru WANG. Extraction and analysis of spatiotemporal variation of rice planting area in Hunan Province based on MODIS time-series data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 177-185.
[10] Kailun JIN, Lu HAO. Evapotranspiration estimation in the Jiangsu-Zhejiang-Shanghai Area based on remote sensing data and SEBAL model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 204-212.
[11] Bing ZHAO, Kebiao MAO, Yulin CAI, Xiangjin MENG. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land & Resources, 2020, 32(2): 233-240.
[12] Yiqiang SHI, Qiuqin DENG, Jun WU, Jian WANG. Regression analysis of MODIS aerosol optical thickness and air quality index in Xiamen City[J]. Remote Sensing for Land & Resources, 2020, 32(1): 106-114.
[13] Yuqi CHENG, Yuqing WANG, Jingping SUN, Chengfu ZHANG. Temporal and spatial variation of evapotranspiration and grassland vegetation cover in Duolun County, Inner Mongolia[J]. Remote Sensing for Land & Resources, 2020, 32(1): 200-208.
[14] Kailin LI, Chungui ZHANG, Kuo LIAO, Lichun LI, Hong WANG. Study of remote sensing atmosphere index of Fujian Province[J]. Remote Sensing for Land & Resources, 2019, 31(4): 151-158.
[15] Linlin WU, Yunlan GUAN, Jiawei LI, Chenxin YUAN, Rui LI. Assessment of Karst rocky desertification based on MODIS: Exemplified by Guizhou Province[J]. Remote Sensing for Land & Resources, 2019, 31(4): 235-242.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech