Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (2) : 93-99     DOI: 10.6046/gtzyyg.2018.02.13
|
Change detection based on adaptive fusion of multiple features
Guanghui WANG1(), Jianlei LI2, Huabin WANG1, Huachao YANG2
1. Satelite Surveying and Mapping Application,NASG,Beijing 100830,China
2. China University of Mining and Technology(Xuzhou), Xuzhou 221116, China
Download: PDF(3089 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In view of the fact that the traditional change detection algorithm mainly depends on the spectral information and fails to effectively use image feature detection advantage, the authors put forward a multi-feature fusion of remote sensing image change detection algorithm. First, color histogram and edge histogram of gradient image object with multi-scale segmentation is statistically analyzed based on the calculation of each object. Then, the object color distance and edge linear characteristics distance between different periods are calculated by using the earth mover’s distance method; the adaptive weighted method is used to combine color distance and edge linear characteristics distance so as to construct object heterogeneity. Finally, the images change detection results are analyzed by using histogram curvature. The experimental results show that the method can fully fuse the color and edge line features and improve the accuracy of detection.

Keywords change detection      color histogram      linear gradient histogram      histogram distance      histogram curvature     
:  TP79  
Issue Date: 30 May 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Guanghui WANG
Jianlei LI
Huabin WANG
Huachao YANG
Cite this article:   
Guanghui WANG,Jianlei LI,Huabin WANG, et al. Change detection based on adaptive fusion of multiple features[J]. Remote Sensing for Land & Resources, 2018, 30(2): 93-99.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.02.13     OR     https://www.gtzyyg.com/EN/Y2018/V30/I2/93
Fig.1  Workflow of change detection
Fig.2  Area of color dominate
Fig.3  Area of edge line dominate
Fig.4  Suzhou City images
Fig.5  Segmentation and standard detection results
Fig.6  Different weight results of change detection
参数 ωhsv=1 ωline=0 ωhsv=0.7 ωline=0.3 ωhsv=0.5 ωline=0.5
变化 未变化 变化 未变化 变化 未变化
实际变化/m2 684 947.40 781 227.60 926 630.50 575 792.40 814 214.35 739 430.11
实际未变化/m2 319 829.90 9 790 902.40 391 942.40 9 682 541.80 393 480.80 9 629 782.05
合计/m2 1 004 777.30 10 572 130.00 1 318 572.90 10 258 334.20 1 207 695.15 10 369 212.16
虚检率 0.32 0.30 0.33
漏检率 0.53 0.38 0.46
正确率 0.90 0.92 0.90
参数 ωhsv=0.3 ωline=0.7 ωhsv=0 ωline=1 本文算法
变化 未变化 变化 未变化 变化 未变化
实际变化/m2 1 090 209.13 348 681.20 1 288 899.00 177 276.00 1 174 865.98 327 581.02
实际未变化/m2 583 248.27 9 554 768.70 867 573.00 9 243 159.20 374 527.02 9 699 933.08
合计/m2 1 673 457.40 9 903 449.90 2 156 472.00 9 420 435.20 1 549 393.00 10 027 514.10
虚检率 0.35 0.40 0.24
漏检率 0.24 0.12 0.22
正确率 0.92 0.91 0.94
Tab.1  Accuracy comparison by methods with different weights
参数 文献[9]方法 文献[16]方法 本文算法
虚检率 0.32 0.32 0.24
漏检率 0.21 0.25 0.22
正确率 0.93 0.92 0.94
Tab.2  Accuracy comparison of different methods of change detection
[1] 魏立飞, 钟燕飞, 张良培 , 等. 遥感影像融合的自适应变化检测(英文)[J]. 遥感学报, 2010,14(6):1196-1211.
url: http://d.wanfangdata.com.cn/Periodical/ygxb201006010
[1] Wei L F, Zhong Y F, Zhang L P , et al. Adaptive change method of remote sensing image fusion[J]. Journal of Remote Sensing, 2010,14(6):1196-1211.
[2] Gong J Y, Sui H G, Sun K M , et al. Object-level change detection based on full-scale image segmentation and its application to Wenchuan Earthquake[J]. Science in China Series E:Technological Sciences, 2008,51(S2):110-122.
doi: 10.1007/s11431-008-6017-y url: http://link.springer.com/10.1007/s11431-008-6017-y
[3] Zhang G, Li Y, Li Z J . A new approach toward object-based change detection[J]. Science China Technological Sciences, 2010,53(S1):105-110.
doi: 10.1007/s11431-010-3215-1 url: http://link.springer.com/article/10.1007/s11431-010-3215-1
[4] Bovolo F, Bruzzone L, Marconcini M . A novel approach to unsupervised change detection based on a semisupervised SVM and a similarity measure[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008,46(7):2070-2082.
doi: 10.1109/TGRS.2008.916643 url: http://ieeexplore.ieee.org/document/4539638/
[5] 庄会富, 邓喀中, 范洪冬 . 纹理特征向量与最大化熵法相结合的SAR影像非监督变化检测[J]. 测绘学报, 2016,45(3):339-346.
url: http://www.cqvip.com/QK/90069X/201603/668414135.html
[5] Zhuang H F, Deng K Z, Fan H D . SAR images unsupervised change detection based on combination of texture feature vector with maximum entropy principle[J]. Acta Geodaetica et Cartographica Sinica, 2016,45(3):339-346.
[6] 李松, 李亦秋, 安裕伦 . 基于变化检测的滑坡灾害自动识别[J].遥感信息, 2010(1):27-31.
doi: 10.3969/j.issn.1000-3177.2010.01.006 url: http://www.cqvip.com/Main/Detail.aspx?id=33394083
[6] Li S, Li Y Q, An Y L . Automatic recognition of landslides based on change detection[J].Remote sensing Information, 2010(1):27-31.
[7] 钟家强, 王润生 . 基于自适应参数估计的多时相遥感图像变化检测[J]. 测绘学报, 2005,34(4):331-336.
[7] Zhong J Q, Wang R S . Multitemporal remote sensing image change detection based on adaptive parameter estimation[J]. Acta Geodaetica et Cartographica Sinica, 2005,34(4):331-336.
[8] 刘臻, 宫鹏, 史培军 , 等. 基于相似度验证的自动变化探测研究[J]. 遥感学报, 2005,9(5):537-543.
doi: 10.3321/j.issn:1007-4619.2005.05.004 url: http://d.wanfangdata.com.cn/Periodical/ygxb200505004
[8] Liu Z, Gong P, Shi P J , et al. Study on change detection automatically based on similarity calibration[J]. Journal of Remote Sensing, 2005,9(5):537-543.
[9] 李亮, 舒宁, 王凯 , 等. 融合多特征的遥感影像变化检测方法[J]. 测绘学报, 2014,43(9):945-953.
doi: 10.13485/j.cnki.11-2089.2014.0138
[9] Li L, Shu N, Wang K , et al. Change detection method for remote sensing images based on multi-features fusion[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(9):945-953.
[10] 魏立飞, 王海波 . 基于MSE模型的高分辨率遥感图像变化检测[J]. 光谱学与光谱分析, 2013,33(3):728-732.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ130327000358hOkQnT
[10] Wei L F, Wang H B . Change detection from high-resolution remote sensing image based on MSE model[J]. Spectroscopy and Spectral Analysis, 2013,33(3):728-732.
[11] 巫兆聪, 胡忠文, 张谦 , 等. 结合光谱、纹理与形状结构信息的遥感影像分割方法[J]. 测绘学报, 2013,42(1):44-50.
[11] Wu Z C, Hu Z W, Zhang Q , et al. On combining spectral,textural and shape features for remote sensing image segmentation[J]. Acta Geodaetica et Cartographica Sinica, 2013,42(1):44-50.
[12] 陈云浩, 冯通, 史培军 , 等. 基于面向对象和规则的遥感影像分类研究[J]. 武汉大学学报(信息科学版), 2006,31(4):316-320.
doi: 10.3321/j.issn:1671-8860.2006.04.009
[12] Chen Y H, Feng T, Shi P J , et al. Classification of remot sensing image based on object oriented and class rules[J]. Geomatics and Information Science of Wuhan University, 2006,31(4):316-320.
[13] 窦建军, 文俊, 刘重庆 . 基于颜色直方图的图像检索技术[J]. 红外与激光工程, 2005,34(1):84-88.
url: http://www.opticsjournal.net/Articles/Abstract?aid=OJ0604280007991w4z7C
[13] Dou J J, Wen J, Liu C Q . Histogram-based color image retrieval[J]. Infrared and Laser Engineering, 2005,34(1):84-88.
[14] Von Gioi R G,Jakubowicz J,Morel J M,et al.LSD:A line segment detector[J]. Image Processing on Line, 2012,2:35-55.
doi: 10.5201/ipol.2012.gjmr-lsd url: http://www.ipol.im/?utm_source=doi
[15] 韩华, 曹伟, 龚涛 . 目标再确认中基于推土机距离的关联度建立[J]. 华中科技大学学报(自然科学版), 2015,43(s1):435-439.
doi: 10.13245/j.hust.15S1104 url: http://d.wanfangdata.com.cn/Periodical/hzlgdxxb2015z1104
[15] Han H, Cao W, Gong T . The establishment of correlative degree in target re-identification based on earth mover’s distance[J]. Huazhong University of Science and Technology(Natural Science Edition), 2015,43(s1):435-439.
[16] Wang A P, Wang S G, Lucieer A . Segmentation of multispectral high-resolution satellite imagery based on integrated feature distributions[J]. International Journal of Remote Sensing, 2010,31(6):1471-1483.
doi: 10.1080/01431160903475308 url: http://www.tandfonline.com/doi/abs/10.1080/01431160903475308
[1] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[2] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[3] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[4] WANG Yiuzhu, HUANG Liang, CHEN Pengdi, LI Wenguo, YU Xiaona. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 89-96.
[5] XU Rui, YU Xiaoyu, ZHANG Chi, YANG Jin, HUANG Yu, PAN Jun. Building change detection method combining Unet and IR-MAD[J]. Remote Sensing for Land & Resources, 2020, 32(4): 90-96.
[6] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[7] Chunsen ZHANG, Rongrong WU, Guojun LI, Weihong CUI, Chenyi FENG. High resolution remote sensing image object change detection based on box-plot method[J]. Remote Sensing for Land & Resources, 2020, 32(2): 19-25.
[8] Yuting YANG, Hailan CHEN, Jiaqi ZUO. Remote sensing monitoring of impervious surface percentage in Hangzhou during 1990—2017[J]. Remote Sensing for Land & Resources, 2020, 32(2): 241-250.
[9] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[10] Yizhi LIU, Huarong LAI, Dingwang ZHANG, Feipeng LIU, Xiaolei JIANG, Qing’an CAO. Change detection of high resolution remote sensing image alteration based on multi-feature mixed kernel SVM model[J]. Remote Sensing for Land & Resources, 2019, 31(1): 16-21.
[11] Zhan ZHAO, Wang XIA, Li YAN. Land use change detection based on multi-source data[J]. Remote Sensing for Land & Resources, 2018, 30(4): 148-155.
[12] Lijuan WANG, Xiao JIN, Hujun JIA, Yao TANG, Guochao MA. Change detection for mine environment based on domestic high resolution satellite images[J]. Remote Sensing for Land & Resources, 2018, 30(3): 151-158.
[13] Xinran ZHU, Bo WU, Qiang ZHANG. An improved CVAPS method for automatic updating of LUCC classification[J]. Remote Sensing for Land & Resources, 2018, 30(2): 29-37.
[14] Jiaojiao DIAO, Xinye GONG, Mingshi LI. A comprehensive change detection method for updating land cover data base[J]. Remote Sensing for Land & Resources, 2018, 30(1): 157-165.
[15] HE Chao. Detection of remote sensing change information and trend analysis of geological hazards[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(s1): 27-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech