Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (1) : 180-188     DOI: 10.6046/zrzyyg.2022016
|
Forest classification for Motuo County: A method based on spatio-temporal-spectral characteristics
WU Yuxin1,2(), WANG Juanle2,4(), HAN Baomin1, YAN Xinrong2,3
1. School of Architecture Engineering, Shandong University of Technology, Zibo 255000, China
2. State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
3. University of Chinese Academy of Sciences, Beijing 100049, China
4. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
Download: PDF(2616 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The forest area of Tibet ranks among the top in China, and the forest resources in Tibet play an important role in water conservation and ecological service. Therefore, it is of great significance to assess the assets of forest natural resources in this region. However, existing products and statistical data related to forest cover fail to meet the demands for the assessment of forest natural resource assets in this region, and it is necessary to explore a fine-scale forest classification method suitable for this region. Based on the cloud computing platform Google Earth Engine (GEE), this study constructed the temporal, spatial, spectral, and auxiliary feature sets of the forest coverage in Motuo County using the Landsat8 remote sensing images of 2015 and 2020, as well as field survey data, and the basic geographic data. Then, it conducted forest classification using the random forest (RF) and classification and regression tree (CART) algorithms. As indicated by the accuracy evaluation of the assessment results obtained using the two algorithms, the forest classification results of 2015 and 2020 obtained using the RF algorithm had relatively high accuracy, with overall classification accuracy of 0.88 and 0.87, respectively and Kappa coefficients of both greater than 0.8. The analyses of the areal and spatio-temporal characteristics of forest classification results show that: ① Motuo County had a total forest area of 34 000 km2 in 2015, with a forest cover rate of up to 84.63%, which was 2% less than that in 2020; ② The forest resources in Motuo County are dominated by broadleaved forests, which are mainly distributed in Yarlung Zangbo Grand Canyon and low-altitude areas and accounted for 72.27% and 75.37% of the total forest area in 2015 and 2020, respectively. Coniferous forests accounted for 25.96% and 23.19% of the total forest area in 2015 and 2020, respectively and are concentrated in high-altitude areas, such as the Namcha Barwa and Gyala Peri peaks. This study determined the spatio-temporal distribution of the forests in Motuo County in 2015 and 2020 by developing a spatio-temporal-spectral classification method. It can provide a reference method for calculating specific forest cover indices SDGs and fill the gap of forest data of small zones. The obtained monitoring data will provide data support for the natural asset assessment and ecological function evaluation in Motuo County.

Keywords forest classification      spatio-temporal-spectral characteristics      random forest      classification and regression tree      Motuo County     
ZTFLH:  S771.8  
Issue Date: 20 March 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yuxin WU
Juanle WANG
Baomin HAN
Xinrong YAN
Cite this article:   
Yuxin WU,Juanle WANG,Baomin HAN, et al. Forest classification for Motuo County: A method based on spatio-temporal-spectral characteristics[J]. Remote Sensing for Natural Resources, 2023, 35(1): 180-188.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022016     OR     https://www.gtzyyg.com/EN/Y2023/V35/I1/180
森林数据集 空间分
辨率/m
时间分辨率 对森林的分类 无法满足自然资源资产评价的原因
Global Forest Watch 30 树木覆盖: 2000年/2010年
树木增加: 2000—2012年
树木减少: 2000—2017年
常绿针叶林、常绿阔叶林、落叶针叶林、落叶阔叶林与混交林 从全球尺度出发,在中国区域应用时存在明显的分类不一致
PALSAR-2/PALSAR forest /Non-Forest Map 25 2007—2010年 森林 其分类体系依然存在划分单一,存在没有对森林类型进行细分
GlobeLand30 30 2000年/2010年/2020年 森林 其对林地的划分依然较粗,森林子集部分仅包含一种类型
GlobCover 300 1992—2015年 常绿针叶林、常绿阔叶林、落叶针叶林、落叶阔叶林与混交林 空间分辨率太大,无法各种森林类型的精细化管理
FROM-GLC 30 2010年/2015年/2017年 林地 没有对森林类型进行细分,中国区域应用时,存在着一些缺陷
Forest Map for China 30 2010年 常绿针叶林、常绿阔叶林、落叶针叶林、落叶阔叶林与混交林 与所需年份时间不同
《林芝地区统计年鉴》(2015年) 1986—2014年 林芝地区的林业生产情况、墨脱县林业产值总数据 缺少县级的森林统计数据
Tab.1  Main land cover products, forest cover thematic products and statistical data products
Fig.1  Forest classification process based on GEE platform
类型 指标
时间特征 目标年份相邻年份同一时期的影像选择
空间特征 con, cor, ent, var
光谱特征 blue, green, red, NIR, NDVI, EVI, NDWI, MSAVI
辅助特征 elevation, aspect, slope
Tab.2  Feature set of forest remote sensing classification
类别 2015年 2020年
RF算法 CART算法 RF算法 CART算法
总体精度 0.88 0.82 0.87 0.82
Kappa系数 0.83 0.74 0.81 0.74
Tab.3  GEE-based remote sensing classification accuracy evaluation of Forest resources in Motuo County
Fig.2  Forest distribution in Motuo County in 2015 and 2020
森林资源 2015年/km2 2020年/km2 变化量/km2 变化率/%
针叶林 7 470.08 6 539.40 -930.68 -12.46
阔叶林 20 794.67 21 240.65 445.98 2.14
针阔混交林 510.35 418.00 -92.35 -18.10
Tab.4  Forest resources in Motuo County in 2015 and 2020
Fig.3  Changes in forest interior and non-forest land
森林类型 针叶林 阔叶林 针阔混交林 非林地
针叶林 5 106.60 532.91 126.34 1 704.24
阔叶林 336.6 318 983.02 164.75 1 310.26
针阔混交林 202.13 159.98 98.36 49.88
非林地 894.04 1 564.74 28.55 3826.65
Tab.5  Forest resource type transfer matrix of Motuo County from 2015 to 2020(km2)
[1] Ridder R M. Global forest resources assessment 2010:Options and recommendations for a global remote sensing survey of forests[J]. FAO for Resources Assessment Programme Work Paper, 2007,141.
[2] 张建龙. 中国森林资源报告[M]. 北京: 中国林业出版社, 2019.
[2] Zhang J L. Forest resources report of China[M]. Beijing: China Forestry Publishing House, 2019.
[3] Hansen M C, Potapov P V, Moore R, et al. High-resolution global maps of 21st-century forest cover change[J]. Science, 2013, 342(6160):850-853.
doi: 10.1126/science.1244693 pmid: 24233722
[4] Shimada M, Itoh T, Motooka T, et al. New global forest/non-forest maps from ALOS PALSAR data (2007—2010)[J]. Remote Sensing of Environment, 2014, 155:13-31.
doi: 10.1016/j.rse.2014.04.014 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425714001527
[5] 陈军, 廖安平, 陈晋, 等. 全球30m地表覆盖遥感数据产品-Globe Land30[J]. 地理信息世界, 2017, 24(1):1-8.
[5] Chen J, Liao A P, Chen J, et al. 30-Meter global land cover data product-globeLand30/GEOMATICS WORLD[J]. Geographical Information World, 2017, 24(1):1-8.
[6] Aurélie Bellavia, 徐希燕. 全球300米分辨率欧空局陆地覆盖数据(1992—2015)[Z]. 北京: 国家青藏高原科学数据中心, 2018.
[6] Aurélie B, Xu X Y. Global ESA CCI land cover classification map (1992—2015)[Z]. Beijing: National Tibetan Plateau Data Center, 2018.
[7] Yu L, Wang J, Gong P. Improving 30 m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets:A segmentation-based approach[J]. International Journal of Remote Sensing, 2013, 34(16):5851-5867.
doi: 10.1080/01431161.2013.798055 url: https://www.tandfonline.com/doi/full/10.1080/01431161.2013.798055
[8] Li C C, Wang J, Hu L Y, et al. A circa 2010 thirty meter resolution forest map for China[J]. Remote Sensing, 2014, 6(6):5325-5343.
doi: 10.3390/rs6065325 url: http://www.mdpi.com/2072-4292/6/6/5325
[9] 林芝地区统计局、 国家统计局林芝调查队编印. 林芝地区统计年鉴 2015[M]. 林芝: 林芝地区统计局, 2016.
[9] Nyingchi Regional Bureau of Statistics,Nyingchi Survey Team, National Bureau of Statistics. Nyingchi Regional Statistical Yearbook 2015[M]. Nyingch: Nyingchi Regional Bureau of Statistics, 2016.
[10] 郝斌飞, 韩旭军, 马明国, 等. Google Earth Engine在地球科学与环境科学中的应用研究进展[J]. 遥感技术与应用, 2018, 33(4):600-611.
[10] Hao B F, Han X J, Ma M G, et al. Research progress on the application of Google Earth Engine in geoscience and environmental sciences[J]. Remote Sensing Technology and Application, 2018. 33(4):600-611.
[11] 徐晗泽宇, 刘冲, 王军邦, 等. Google Earth Engine平台支持下的赣南柑橘果园遥感提取研究[J]. 地球信息科学学报, 2018, 20(3):396-404.
doi: 10.12082/dqxxkx.2018.170553
[11] Xu Han Z Y, Liu C, Wang J B, et al. Study on extraction of citrus orchard in Gannan region based on Google Earth Engine platform[J]. Journal of Geo-information Science, 2018, 20(3):396-404.
[12] Wang J, Xiao X M, Qin Y W, et al. Mapping the dynamics of eastern redcedar encroachment into grasslands during 1984—2010 through PALSAR and time series Landsat images[J]. Remote Sensing of Environment, 2017, 190:233-246.
doi: 10.1016/j.rse.2016.12.025 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425716305041
[13] Barboza C E, Turpo C E Y, de Almeida C M, et al. Monitoring wildfires in the northeastern peruvian amazon using Landsat8 and Sentinel-2 imagery in the GEE platform[J]. ISPRS International Journal of Geo-Information, 2020, 9(10):564.
doi: 10.3390/ijgi9100564 url: https://www.mdpi.com/2220-9964/9/10/564
[14] Pekel J F, Cottam A, Gorelick N, et al. High-resolution mapping of global surface water and its long-term changes[J]. Nature, 2016, 540(7633):418-422.
doi: 10.1038/nature20584
[15] Xiao W, Xu S, He T. Mapping paddy rice with sentinel-1/2 and phenology-,object-based algorithm-A implementation in Hangjiahu plain in China using GEE platform[J]. Remote Sensing, 2021, 13(5):990.
doi: 10.3390/rs13050990 url: https://www.mdpi.com/2072-4292/13/5/990
[16] Cao X M, Gao X H, Shen Z Y, et al. Expansion of urban impervious surfaces in Xining City based on GEE and Landsat time series data[J]. IEEE Access, 2020, 8:147097-147111.
doi: 10.1109/Access.6287639 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
[17] 李若楠, 欧光龙, 代沁伶, 等. 基于GEE和Landsat时间序列数据的香格里拉森林类型分类研究[J]. 西南林业大学学报(自然科学), 2020, 40(5):115-125.
[17] Li R N, Ou G L, Dai Q L, et al. Forest types classification of Shangri-La based on Google Earth Engine and landsat time-series data[J]. Journal of Southwest Forestry University (Natural Science), 2020, 40(5):115-125.
[18] 娄佩卿, 付波霖, 林星辰, 等. 基于GEE的1998—2018年京津冀土地利用变化对生态系统服务价值的影响[J]. 环境科学, 2019, 40(12):5473-5483.
[18] Lou P Q, Fu B L, Lin X C, et al. Influence of land use change on ecosystem service value based on GEE in the Beijing-Tianjin-Hebei region from 1998 to 2018[J]. Environmental Science, 2019, 40(12):5473-5483.
[19] Belgiu M, Drăguţ L. Random forest in remote sensing:A review of applications and future directions[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 114:24-31.
doi: 10.1016/j.isprsjprs.2016.01.011 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271616000265
[20] Mountrakis G J, Ogole I C. Support vector machines in remote sensing:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66:247-259.
doi: 10.1016/j.isprsjprs.2010.11.001 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271610001140
[21] Pal M, Mather P M. An assessment of the effectiveness of decision tree methods for land cover classification[J]. Remote Sensing of Environment, 2003, 86(4):554-565.
doi: 10.1016/S0034-4257(03)00132-9 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425703001329
[22] Pal M. Random forest classifier for remote sensing classification[J]. International Journal of Remote Sensing. 2005, 26(1):217-222.
doi: 10.1080/01431160412331269698 url: https://www.tandfonline.com/doi/full/10.1080/01431160412331269698
[23] Ghimire B, Rogan J, Galiano V R, et al. An evaluation of bagging,boosting,and random forests for land-cover classification in cape cod,massachusetts,USA[J]. GIScience & Remote Sensing, 2012, 49(5):623-643.
[24] Pal M, Mather P M. Support vector machines for classification in remote sensing[J]. International Journal of Remote Sensing, 2005, 26(5):1007-1011.
doi: 10.1080/01431160512331314083 url: https://www.tandfonline.com/doi/full/10.1080/01431160512331314083
[25] Rogan J, Miller J, Stow D, et al. Land-cover change monitoring with classification trees using Landsat TM and ancillary data[J]. Photogrammetric Engineering & Remote Sensing, 2003, 69(7):793-804.
[26] Hansen M, Dubayah R, DeFries R. Classification trees:An alternative to traditional land cover classifiers[J]. International Journal of Remote Sensing, 1996, 17(5):1075-1081.
doi: 10.1080/01431169608949069 url: https://www.tandfonline.com/doi/full/10.1080/01431169608949069
[27] Vega Isuhuaylas L A, Hirata Y, Ventura Santos L C, et al. Natural forest mapping in the Andes (Peru):A comparison of the performance of machine-learning algorithms[J]. Remote Sensing, 2018, 10(5):782.
doi: 10.3390/rs10050782 url: http://www.mdpi.com/2072-4292/10/5/782
[28] Liu Y N, Gong W S, Hu X Y, et al. Forest type identification with random forest using Sentinel-1A,Sentinel-2A,multi-temporal Landsat-8 and DEM data[J]. Remote Sensing, 2018, 10(6):946.
doi: 10.3390/rs10060946 url: http://www.mdpi.com/2072-4292/10/6/946
[29] Wang D Z, Wan B, Qiu P H, et al. Evaluating the performance of Sentinel-2,Landsat8 and Pléiades-1 in mapping mangrove extent and species[J]. Remote Sensing, 2018, 10(9):1468.
doi: 10.3390/rs10091468 url: http://www.mdpi.com/2072-4292/10/9/1468
[30] 柳应华. 西藏墨脱县产业发展研究[J]. 中国藏学, 2013(3):30-34.
[30] Liu Y H. Study on industrial development of Motuo County,Xizang Province[J]. Chinese Tibetology, 2013(3):30-34.
[31] 朱文泉, 林文鹏. 遥感数字图像处理:原理与方法[M]. 北京: 高等教育出版社, 2015.
[31] Zhu W Q, Lin W P. Remote sensing digital image processing[M]. Beijing: Higher Education Press, 2015.
[32] Guo X J, Zhang C C, Luo W R, et al. Urban impervious surface extraction based on multi-features and random forest[J]. IEEE Access, 2020, 8:226609-226623.
doi: 10.1109/Access.6287639 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
[33] 刘龙飞, 陈云浩, 李京. 遥感影像纹理分析方法综述与展望[J]. 遥感技术与应用, 2003(6):441-447.
[33] Liu L F, Chen Y H, Li J. Remote Sensing image texture analysis:A review and prospect[J]. Remote Sensing Technology and Application, 2003(6):441-447.
[34] 董师师, 黄哲学. 随机森林理论浅析[J], 集成技术, 2013, 2(1):1-7.
[34] Dong S S, Huang Z X. A brief theoretical overview of random forests[J]. Journal of Integration Technology, 2013. 2(1):1-7.
[35] 陈云, 戴锦芳, 李俊杰. 基于影像多种特征的CART决策树分类方法及其应用[J]. 地理与地理信息科学, 2008(2):33-36.
[35] Chen Y, Dai J Fg, Li J J. CART-based decision tree classifier using multi-feature of image and its application[J]. Geography and Geo-Information Science, 2008(2):33-36.
[36] 张敬垚. 基于随机森林算法的关键蛋白识别方法研究[D]. 长春: 吉林农业大学, 2019.
[36] Zhang J Y. Research on essential protein recognition based on random forest algorithm[D]. Changchun: Jilin Agricultural University, 2019.
[37] 魏梦莹. 林芝地区森林植被分布及动态变化监测研究[D]. 西安: 长安大学, 2018.
[37] Wei M Y. Study on forest vegetation distribution and forest resources change monitoring in Linzhi area[D]. Xi’an: Chang’an University, 2018.
[38] 安森鹏, 高振岭, 王磊. 气候变化对大兴安岭北部森林生态系统的影响[J]. 农业与技术, 2013, 33(1):55.
[38] An S P, Gao Z L, Wang L. Effects of climate change on forest ecosystem in northern Daxing’an mountains[J]. Agriculture and Technology, 2013, 33(1):55.
[39] 魏晨辉. 黑龙江流域景观与气候驱动的植物多样性和碳汇变化研究[D]. 长春: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2021.
[39] Wei C H. Landscape and climate-driven changes in plant diversity and carbon sink in the Heilongjiang River Basin[D]. Changchun: University of Chinese Academy of Sciences (Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences),2021.
[40] 于世勇, 史绍林. 全球变化对森林的影响[J]. 温带林业研究, 2021, 4(2):8-12.
[40] Yu S Y, Shi S L. Research on essential protein recognition based on random forest algorithm[J]. Journal of Temperate Forestry Research, 2021, 4(2):8-12.
[1] XI Lei, SHU Qingtai, SUN Yang, HUANG Jinjun, SONG Hanyue. Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China[J]. Remote Sensing for Natural Resources, 2023, 35(3): 160-169.
[2] PARIHA Helili, ZAN Mei. Spatio-temporal changes and influencing factors of ecological environments in oasis cities of arid regions[J]. Remote Sensing for Natural Resources, 2023, 35(3): 201-211.
[3] LIANG Jintao, CHEN Chao, ZHANG Zili, LIU Zhisong. A random forest-based method integrating indices and principal components for classifying remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(3): 35-42.
[4] WU Weichao, YE Fawang. Cloud detection of Sentinel-2 images for multiple backgrounds[J]. Remote Sensing for Natural Resources, 2023, 35(3): 124-133.
[5] ZHANG Hao, GAO Xiaohong, SHI Feifei, LI Runxiang. Sentinel-2 MSI and Sentinel-1 SAR based information extraction of abandoned land in the western Loess Plateau:A case study of Minhe County in Qinghai[J]. Remote Sensing for Natural Resources, 2022, 34(4): 144-154.
[6] WANG Chunxia, ZHANG Jun, LI Yixu, PHOUMILAY. The construction and verification of a water index in the complex environment based on GF-2 images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 50-58.
[7] DENG Jingwen, TIAN Yichao, ZHANG Qiang, TAO Jin, ZHANG Yali, HUANG Shengguang. Application of airborne LiDAR in the estimation of the mean height of mangrove stand[J]. Remote Sensing for Natural Resources, 2022, 34(3): 129-137.
[8] WANG Xuejie, SHI Guoping, ZHOU Ziqin, ZHEN Yang. Revision of solar radiation product ERA5 based on random forest algorithm[J]. Remote Sensing for Natural Resources, 2022, 34(2): 105-111.
[9] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[10] LIU Mingxing, LIU Jianhong, MA Minfei, JIANG Ya, ZENG Jingchao. Monitoring of Zanthoxylum bungeanum Maxim planting using GF-2 PMS images and the random forest algorithm: A case study of Linxia, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 218-229.
[11] GUO Xiaozheng, YAO Yunjun, JIA Kun, ZHANG Xiaotong, ZHAO Xiang. Information extraction of Mars dunes based on U-Net[J]. Remote Sensing for Natural Resources, 2021, 33(4): 130-135.
[12] LIU Chunting, FENG Quanlong, JIN Dingjian, SHI Tongguang, LIU Jiantao, ZHU Mingshui. Application of random forest and Sentinel-1/2 in the information extraction of impervious layers in Dongying City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 253-261.
[13] WU Qian, JIANG Qigang, SHI Pengfei, ZHANG Lili. The estimation of soil calcium carbonate content based on Hyperspectral data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 138-144.
[14] XU Yun, XU Aiwen. Classification and detection of cloud, snow and fog in remote sensing images based on random forest[J]. Remote Sensing for Land & Resources, 2021, 33(1): 96-101.
[15] YANG Lijuan. Estimating PM2.5 concentrations in eastern coastal area of China using a two-stage random forest model[J]. Remote Sensing for Land & Resources, 2020, 32(4): 137-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech