Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (4) : 96-104     DOI: 10.6046/zrzyyg.2022260
|
Noise-resistant change detection for remote sensing images based on spatial fuzzy C-means clustering and a Bayesian network
WANG Zihao1(), LI Yikun1,2,3(), LI Xiaojun1,2,3, YANG Shuwen1,2,3
1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
Download: PDF(6290 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Currently, most change detection algorithms for remote sensing images fail to effectively process images polluted by Gaussian, impulse, or mixed noise. To address this problem, this study presented five fuzzy C-means (FCM) clustering algorithms (FCM_S1, FCM_S2, KFCM_S1, KFCM_S2, and FLICM) based on neighborhood space information. These algorithms, which can efficiently decompose mixed pixels in the presence of noise pollution, were combined with a simple Bayesian network (SBN). Under the framework of change vector analysis in posterior probability space (CVAPS), this study developed five change detection methods for remote sensing images, exhibiting high resistance to Gaussian, impulse, and mixed noise. Comparative experiments demonstrate that the change detection algorithms proposed in this study manifest high robustness against the above-mentioned noise.

Keywords change detection      fuzzy C-means clustering      simple Bayesian network      change vector analysis in posterior probability space     
ZTFLH:  TP79  
Issue Date: 21 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zihao WANG
Yikun LI
Xiaojun LI
Shuwen YANG
Cite this article:   
Zihao WANG,Yikun LI,Xiaojun LI, et al. Noise-resistant change detection for remote sensing images based on spatial fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2023, 35(4): 96-104.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022260     OR     https://www.gtzyyg.com/EN/Y2023/V35/I4/96
Fig.1  Simple Bayesian network
Fig.2  Algorithm flowchart
Fig.3  Experimental images and manual change detection result
Fig.4  Change effect images(5% salt and pepper noise)
指标 FCM-SBN-
CVAPS
SVM-
CVAPS
FCM_S2-
SBN-
CVAPS
KFCM_S2-
SBN-CVAPS
错检率 0.341 0.684 0.209 0.325
漏检率 0.202 0.070 0.076 0.095
总体精度 0.953 0.841 0.975 0.959
Kappa系数 0.647 0.406 0.844 0.751
Tab.1  Change detection model performance comparison(5% salt and pepper noise)
Fig.5  Change detection effect images(Gaussian noise with zero mean, variance 0.01)
指标 FCM-SBN-
CVAPS
SVM-
CVAPS
FCM_S1-
SBN-
CVAPS
KFCM_S1-
SBN-CVAPS
错检率 0.501 0.594 0.199 0.070
漏检率 0.525 0.291 0.131 0.241
总体精度 0.923 0.898 0.973 0.977
Kappa系数 0.497 0.466 0.798 0.830
Tab.2  Change detection model performance comparison (Gaussian noise with zero mean, variance 0.01)
Fig.6  Change detection effect images(0.5% salt and pepper noise + zero mean, gaussian noise with variance 0.001)
指标 FCM-SBN-
CVAPS
SVM-
CVAPS
FLICM-
SBN-CVAPS
错检率 0.347 0.594 0.071
漏检率 0.006 0.291 0.187
总体精度 0.957 0.898 0.979
Kappa系数 0.751 0.549 0.851
Tab.3  Change detection model performance comparison (0.5% salt and pepper noise + zero mean, gaussian noise with variance 0.001)
Fig.7  Noise sensitivity diagrams of SVM-CVAPS, FCM-SBN-CVAPS algorithms and four improved algorithms
算法 椒盐噪
声0.4%
椒盐噪
声0.6%
零均值,方差为
0.001高斯噪声
零均值,方差为0.001高
斯噪声+椒盐噪声0.2%
零均值,方差为0.001高
斯噪声+椒盐噪声0.4%
零均值,方差为0.001高
斯噪声+椒盐噪声0.6%
FLICM-SBN-CVAPS 0.868 0.720 0.853 0.861 0.778 0.754
FCM-SBN-CVAPS 0.821 0.700 0.501 0.767 0.742 0.728
FCM_S1-SBN-CVAPS 0.885 0.882 0.873 0.864 0.876 0.861
FCM_S2-SBN-CVAPS 0.882 0.881 0.881 0.881 0.883 0.880
SVM-CVAPS 0.693 0.668 0.596 0.675 0.638 0.538
Tab.4  Noise sensitivity table for FLICM-SBN-CVAPS(Kappa coefficient value)
Fig.8  Fuzzy degree sensitivity diagram
Fig.9  Sensitivity diagram for the number of training samples
[1] 李德仁. 利用遥感影像进行变化检测[J]. 武汉大学学报(信息科学版), 2003, 28(s1):7-12.
[1] Li D R. Change detection from remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2003, 28(s1):7-12.
[2] Tewkesbury A P, Comber A J, Tate N J, et al. A critical synthesis of remotely sensed optical image change detection techniques[J]. Remote Sensing of Environment, 2015, 160:1-14.
doi: 10.1016/j.rse.2015.01.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425715000152
[3] Li X, Zhou Y. An unsupervised framework for change detection in remote sensing images[C]// 2021 IEEE 21st International Conference on Communication Technology (ICCT).IEEE, 2021:1112-1116.
[4] Yetgin Z. Unsupervised change detection of satellite images using local gradual descent[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5):1919-1929.
doi: 10.1109/TGRS.2011.2168230 url: http://ieeexplore.ieee.org/document/6059501/
[5] 蔡怤晟, 向泽君, 蔡衡, 等. 结合特征选择的CVA多尺度遥感影像变化检测[J]. 测绘通报, 2020(8):101-104,130.
doi: 10.13474/j.cnki.11-2246.2020.0257
[5] Cai F S, Xiang Z J, Cai H, et al. CVA multi-scale remote sensing image change detection combined with feature selection[J]. Bulletin of Surveying and Mapping, 2020(8):101-104,130.
doi: 10.13474/j.cnki.11-2246.2020.0257
[6] 王译著, 黄亮, 陈朋弟, 等. 联合显著性和多方法差异影像融合的遥感影像变化检测[J]. 自然资源遥感, 2021, 33(3):89-96.doi: 10.6046/zrzyyg.2020312.
[6] Wang Y Z, Huang L, Chen P D, et al. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing of Natural Resources, 2021, 33(3):89-96.doi: 10.6046/zrzyyg.2020312.
[7] 叶沅鑫, 孙苗苗, 王蒙蒙, 等. 结合邻域信息和结构特征的遥感影像变化检测[J]. 测绘学报, 2021, 50(10):1349-1357.
doi: 10.11947/j.AGCS.2021.20200130
[7] Ye Y X, Sun M M, Wang M M, et al. Change detection of remote sensing images by combining neighborhood information and structural features[J]. Acta Geodaetica of Cartographica Sinica, 2021, 50(10):1349-1357.
[8] Chen J, Chen X, Cui X, et al. Change vector analysis in posterior probability space:A new method for land cover change detection[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(2):317-321.
doi: 10.1109/LGRS.2010.2068537 url: http://ieeexplore.ieee.org/document/5597922/
[9] 李轶鲲, 杨洋, 杨树文, 等. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4):82-88.doi: 10.6046/zrzyyg.2021032.
[9] Li Y K, Yang Y, Yang S W, et al. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4):82-88.doi: 10.6046/zrzyyg.2021032.
[10] 雷涛, 张肖, 加小红, 等. 基于模糊聚类的图像分割研究进展[J]. 电子学报, 2019, 47(8):1776-1791.
doi: 10.3969/j.issn.0372-2112.2019.08.023
[10] Lei T, Zhang X, Jia X H, et al. Research progress on image segmentation based on fuzzy clustering[J]. Acta Electronica Sinica, 2019, 47(8):1776-1791.
doi: 10.3969/j.issn.0372-2112.2019.08.023
[11] 张春森, 吴蓉蓉, 李国君, 等. 面向对象的高空间分辨率遥感影像箱线图变化检测方法[J]. 国土资源遥感, 2020, 32(2):19-25.doi: 10.6046/gtzyyg.2020.02.03.
[11] Zhang C S, Wu R R, Li G J, et al. High resolution remote sensing image object change detection based on box-plot method[J]. Remote Sensing of Land and Resources, 2020, 32(2):19-25.doi: 10.6046/gtzyyg.2020.02.03.
[12] Attioui S, Najah S. Unsupervised change detection method in SAR images based on deep belief network using an improved fuzzy C-means clustering algorithm[J]. IET Image Processing, 2021, 15(4):974-982.
doi: 10.1049/ipr2.v15.4 url: https://onlinelibrary.wiley.com/toc/17519667/15/4
[13] Ahmed M N, Yamany S M, Mohamed N, et al. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data[J]. IEEE Transactions on Medical Imaging, 2002, 21(3):193-199.
pmid: 11989844
[14] Chen S, Zhang D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part B (Cybernetics), 2004, 34(4):1907-1916.
doi: 10.1109/TSMCB.2004.831165 url: http://ieeexplore.ieee.org/document/1315771/
[15] Krinidis S, Chatzis V. A robust fuzzy local information C-means clustering algorithm[J]. IEEE Transactions on Image Processing, 2010, 19(5):1328-1337.
doi: 10.1109/TIP.2010.2040763 pmid: 20089475
[16] Yang Y, Li Y, Song J, et al. A comparative study of remote sensing image change detection based on Bayesian networks and different spatial fuzzy C-means clustering[C]// 2022 The 9th International Conference on Geology Resources Management and Sustainable Development.ICGRMSD, 2022:712-719.
[17] Hou Z, Li W, Du Q. A patch tensor-based change detection method for hyperspectral images[C]// 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.IEEE, 2021:4328-4331.
[18] Xue D, Lei T, Jia X, et al. Unsupervised change detection using multiscale and multiresolution Gaussian-mixture-model guided by saliency enhancement[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14:1796-1809.
doi: 10.1109/JSTARS.4609443 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
[19] Fang W, Xi C. Land-cover change detection for SAR images based on biobjective fuzzy local information clustering method with decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:4506105.
[1] LIU Hanwei, CHEN Fulong, LIAO Yaao. Remote sensing dynamic monitoring and driving factor analysis for the Beijing section of Ming Great Wall[J]. Remote Sensing for Natural Resources, 2023, 35(4): 255-263.
[2] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[3] QIN Le, HE Peng, MA Yuzhong, LIU Jianqiang, YANG Bin. Change detection of satellite time series images based on spatial-temporal-spectral features[J]. Remote Sensing for Natural Resources, 2022, 34(4): 105-112.
[4] MENG Congtang, ZHAO Yindi, HAN Wenquan, HE Chenyang, CHEN Xiqiu. RandLA-Net-based detection of urban building change using airborne LiDAR point clouds[J]. Remote Sensing for Natural Resources, 2022, 34(4): 113-121.
[5] XUE Bai, WANG Yizhe, LIU Shuhan, YUE Mingyu, WANG Yiying, ZHAO Shihu. Change detection of high-resolution remote sensing images based on Siamese network[J]. Remote Sensing for Natural Resources, 2022, 34(1): 61-66.
[6] PAN Jianping, XU Yongjie, LI Mingming, HU Yong, WANG Chunxiao. Research and development of automatic detection technologies for changes in vegetation regions based on correlation coefficients and feature analysis[J]. Remote Sensing for Natural Resources, 2022, 34(1): 67-75.
[7] LI Yikun, YANG Yang, YANG Shuwen, WANG Zihao. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4): 82-88.
[8] WANG Yiuzhu, HUANG Liang, CHEN Pengdi, LI Wenguo, YU Xiaona. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 89-96.
[9] XU Rui, YU Xiaoyu, ZHANG Chi, YANG Jin, HUANG Yu, PAN Jun. Building change detection method combining Unet and IR-MAD[J]. Remote Sensing for Land & Resources, 2020, 32(4): 90-96.
[10] DIAO Mingguang, LIU Wenjing, LI Jing, LIU Fang, WANG Yanzuo. Dynamic change detection method of vector result data in mine remote sensing monitoring[J]. Remote Sensing for Land & Resources, 2020, 32(3): 240-246.
[11] Chunsen ZHANG, Rongrong WU, Guojun LI, Weihong CUI, Chenyi FENG. High resolution remote sensing image object change detection based on box-plot method[J]. Remote Sensing for Land & Resources, 2020, 32(2): 19-25.
[12] Yuting YANG, Hailan CHEN, Jiaqi ZUO. Remote sensing monitoring of impervious surface percentage in Hangzhou during 1990—2017[J]. Remote Sensing for Land & Resources, 2020, 32(2): 241-250.
[13] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[14] Yizhi LIU, Huarong LAI, Dingwang ZHANG, Feipeng LIU, Xiaolei JIANG, Qing’an CAO. Change detection of high resolution remote sensing image alteration based on multi-feature mixed kernel SVM model[J]. Remote Sensing for Land & Resources, 2019, 31(1): 16-21.
[15] Zhan ZHAO, Wang XIA, Li YAN. Land use change detection based on multi-source data[J]. Remote Sensing for Land & Resources, 2018, 30(4): 148-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech