|
|
|
|
|
|
Noise-resistant change detection for remote sensing images based on spatial fuzzy C-means clustering and a Bayesian network |
WANG Zihao1( ), LI Yikun1,2,3( ), LI Xiaojun1,2,3, YANG Shuwen1,2,3 |
1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China 2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China 3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China |
|
|
Abstract Currently, most change detection algorithms for remote sensing images fail to effectively process images polluted by Gaussian, impulse, or mixed noise. To address this problem, this study presented five fuzzy C-means (FCM) clustering algorithms (FCM_S1, FCM_S2, KFCM_S1, KFCM_S2, and FLICM) based on neighborhood space information. These algorithms, which can efficiently decompose mixed pixels in the presence of noise pollution, were combined with a simple Bayesian network (SBN). Under the framework of change vector analysis in posterior probability space (CVAPS), this study developed five change detection methods for remote sensing images, exhibiting high resistance to Gaussian, impulse, and mixed noise. Comparative experiments demonstrate that the change detection algorithms proposed in this study manifest high robustness against the above-mentioned noise.
|
Keywords
change detection
fuzzy C-means clustering
simple Bayesian network
change vector analysis in posterior probability space
|
|
Issue Date: 21 December 2023
|
|
|
[1] |
李德仁. 利用遥感影像进行变化检测[J]. 武汉大学学报(信息科学版), 2003, 28(s1):7-12.
|
[1] |
Li D R. Change detection from remote sensing images[J]. Geomatics and Information Science of Wuhan University, 2003, 28(s1):7-12.
|
[2] |
Tewkesbury A P, Comber A J, Tate N J, et al. A critical synthesis of remotely sensed optical image change detection techniques[J]. Remote Sensing of Environment, 2015, 160:1-14.
doi: 10.1016/j.rse.2015.01.006
url: https://linkinghub.elsevier.com/retrieve/pii/S0034425715000152
|
[3] |
Li X, Zhou Y. An unsupervised framework for change detection in remote sensing images[C]// 2021 IEEE 21st International Conference on Communication Technology (ICCT).IEEE, 2021:1112-1116.
|
[4] |
Yetgin Z. Unsupervised change detection of satellite images using local gradual descent[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(5):1919-1929.
doi: 10.1109/TGRS.2011.2168230
url: http://ieeexplore.ieee.org/document/6059501/
|
[5] |
蔡怤晟, 向泽君, 蔡衡, 等. 结合特征选择的CVA多尺度遥感影像变化检测[J]. 测绘通报, 2020(8):101-104,130.
doi: 10.13474/j.cnki.11-2246.2020.0257
|
[5] |
Cai F S, Xiang Z J, Cai H, et al. CVA multi-scale remote sensing image change detection combined with feature selection[J]. Bulletin of Surveying and Mapping, 2020(8):101-104,130.
doi: 10.13474/j.cnki.11-2246.2020.0257
|
[6] |
王译著, 黄亮, 陈朋弟, 等. 联合显著性和多方法差异影像融合的遥感影像变化检测[J]. 自然资源遥感, 2021, 33(3):89-96.doi: 10.6046/zrzyyg.2020312.
|
[6] |
Wang Y Z, Huang L, Chen P D, et al. Change detection of remote sensing images based on the fusion of co-saliency difference images[J]. Remote Sensing of Natural Resources, 2021, 33(3):89-96.doi: 10.6046/zrzyyg.2020312.
|
[7] |
叶沅鑫, 孙苗苗, 王蒙蒙, 等. 结合邻域信息和结构特征的遥感影像变化检测[J]. 测绘学报, 2021, 50(10):1349-1357.
doi: 10.11947/j.AGCS.2021.20200130
|
[7] |
Ye Y X, Sun M M, Wang M M, et al. Change detection of remote sensing images by combining neighborhood information and structural features[J]. Acta Geodaetica of Cartographica Sinica, 2021, 50(10):1349-1357.
|
[8] |
Chen J, Chen X, Cui X, et al. Change vector analysis in posterior probability space:A new method for land cover change detection[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(2):317-321.
doi: 10.1109/LGRS.2010.2068537
url: http://ieeexplore.ieee.org/document/5597922/
|
[9] |
李轶鲲, 杨洋, 杨树文, 等. 耦合模糊C均值聚类和贝叶斯网络的遥感影像后验概率空间变化向量分析[J]. 自然资源遥感, 2021, 33(4):82-88.doi: 10.6046/zrzyyg.2021032.
|
[9] |
Li Y K, Yang Y, Yang S W, et al. A change vector analysis in posterior probability space combined with fuzzy C-means clustering and a Bayesian network[J]. Remote Sensing for Natural Resources, 2021, 33(4):82-88.doi: 10.6046/zrzyyg.2021032.
|
[10] |
雷涛, 张肖, 加小红, 等. 基于模糊聚类的图像分割研究进展[J]. 电子学报, 2019, 47(8):1776-1791.
doi: 10.3969/j.issn.0372-2112.2019.08.023
|
[10] |
Lei T, Zhang X, Jia X H, et al. Research progress on image segmentation based on fuzzy clustering[J]. Acta Electronica Sinica, 2019, 47(8):1776-1791.
doi: 10.3969/j.issn.0372-2112.2019.08.023
|
[11] |
张春森, 吴蓉蓉, 李国君, 等. 面向对象的高空间分辨率遥感影像箱线图变化检测方法[J]. 国土资源遥感, 2020, 32(2):19-25.doi: 10.6046/gtzyyg.2020.02.03.
|
[11] |
Zhang C S, Wu R R, Li G J, et al. High resolution remote sensing image object change detection based on box-plot method[J]. Remote Sensing of Land and Resources, 2020, 32(2):19-25.doi: 10.6046/gtzyyg.2020.02.03.
|
[12] |
Attioui S, Najah S. Unsupervised change detection method in SAR images based on deep belief network using an improved fuzzy C-means clustering algorithm[J]. IET Image Processing, 2021, 15(4):974-982.
doi: 10.1049/ipr2.v15.4
url: https://onlinelibrary.wiley.com/toc/17519667/15/4
|
[13] |
Ahmed M N, Yamany S M, Mohamed N, et al. A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data[J]. IEEE Transactions on Medical Imaging, 2002, 21(3):193-199.
pmid: 11989844
|
[14] |
Chen S, Zhang D. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J]. IEEE Transactions on Systems,Man,and Cybernetics,Part B (Cybernetics), 2004, 34(4):1907-1916.
doi: 10.1109/TSMCB.2004.831165
url: http://ieeexplore.ieee.org/document/1315771/
|
[15] |
Krinidis S, Chatzis V. A robust fuzzy local information C-means clustering algorithm[J]. IEEE Transactions on Image Processing, 2010, 19(5):1328-1337.
doi: 10.1109/TIP.2010.2040763
pmid: 20089475
|
[16] |
Yang Y, Li Y, Song J, et al. A comparative study of remote sensing image change detection based on Bayesian networks and different spatial fuzzy C-means clustering[C]// 2022 The 9th International Conference on Geology Resources Management and Sustainable Development.ICGRMSD, 2022:712-719.
|
[17] |
Hou Z, Li W, Du Q. A patch tensor-based change detection method for hyperspectral images[C]// 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.IEEE, 2021:4328-4331.
|
[18] |
Xue D, Lei T, Jia X, et al. Unsupervised change detection using multiscale and multiresolution Gaussian-mixture-model guided by saliency enhancement[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14:1796-1809.
doi: 10.1109/JSTARS.4609443
url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=4609443
|
[19] |
Fang W, Xi C. Land-cover change detection for SAR images based on biobjective fuzzy local information clustering method with decomposition[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19:4506105.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|