|
|
|
|
|
|
Spatio-temporal evolution and influencing factors of ecological environment quality in the Changsha-Zhuzhou-Xiangtan urban agglomeration |
LI Guangzhe1,2( ), WANG Hao1,2( ), CAO Yinxuan2, ZHANG Xiaoyu2, NING Xiaogang1,2 |
1. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China 2. Chinese Academy of Surveying & Mapping, Beijing 100036, China |
|
|
Abstract Accurately identifying the evolutionary trend and influencing factors of ecological environment quality in new urban agglomerations holds crucial significance for scientifically guiding urbanization and achieving sustainable development. Existing research on the spatio-temporal evolutionary characteristics of ecological environment quality in new urban agglomerations ignored the interactions of multiple factors on ecological environment quality. Based on the Google Earth Engine (GEE) platform, and long-time-series Landsat TM/OLI remote sensing images as the fundamental data source, this study delved into the spatio-temporal variations of ecological environment quality in the Changsha-Zhuzhou-Xiangtan urban agglomeration from 1990 to 2020 using methods including the remote sensing ecological index (RSEI), Sen’s slope estimator, and Mann-Kendall test. Moreover, the geographical detector was employed to quantitatively measure the effects of various factors on the urban agglomeration’s spatial heterogeneity. The results indicate that the Changsha-Zhuzhou-Xiangtan urban agglomeration exhibited generally high ecological environment quality, with a spatial distribution pattern of higher quality in marginal areas and lower quality in core areas. The average proportion of areas with ecological environment quality graded as “excellent” and “good” exceeds 60% in the urban agglomeration. The sustainable development strategy altered the urban sprawl in this urban agglomeration, leading to a decline followed by an increase in RSEI, with an inflection point in 2000. From 1990 to 2020, the ecological environment quality significantly deteriorated in central urban areas while improvement was observed in non-central urban areas. Physical and geographical conditions significantly influenced the ecological environment quality of the urban agglomeration in the early stages. With socio-economic progression, the influence of socio-economic factors like nighttime lighting on ecological environment quality gradually intensified, assuming a dominant role over time. Besides, the interactions among factors significantly enhanced the effects of individual factors on ecological environment quality. Before 2010, the interactions between human and natural factors exerted considerable influences on the ecological environment. After 2015, the interactions among human factors yielded more pronounced effects on ecological environment quality. These findings serve as a foundational guide for the integrated high-quality development of the Changsha-Zhuzhou-Xiangtan urban agglomeration and a reference for the advancement of other comparable urban agglomerations.
|
Keywords
Changsha-Zhuzhou-Xiangtan urban agglomeration
Google Earth Engine
remote sensing ecological index
geographical detector
ecological environment quality
|
|
Issue Date: 21 December 2023
|
|
|
[1] |
Bao C, He D M. Scenario modeling of urbanization development and water scarcity based on system dynamics:A case study of Beijing-Tianjin-Hebei urban agglomeration,China[J]. International Journal of Environmental Research and Public Health, 2019, 16(20):3834.
doi: 10.3390/ijerph16203834
url: https://www.mdpi.com/1660-4601/16/20/3834
|
[2] |
Wan J J, Li Y X, Ma C C, et al. Measurement of coupling coordination degree and spatio-temporal characteristics of the social economy and ecological environment in the Chengdu-Chongqing urban agglomeration under high-quality development[J]. International Journal of Environmental Research and Public Health, 2021, 18(21):11629.
doi: 10.3390/ijerph182111629
url: https://www.mdpi.com/1660-4601/18/21/11629
|
[3] |
方创琳, 张国友, 薛德升. 中国城市群高质量发展与科技协同创新共同体建设[J]. 地理学报, 2021, 76(12):2898-2908.
doi: 10.11821/dlxb202112003
|
[3] |
Fang C L, Zhang G Y, Xue D S. High-quality development of urban agglomerations in China and construction of science and technology collaborative innovation community[J]. Acta Geographica Sinica, 2021, 76(12):2898-2908.
doi: 10.11821/dlxb202112003
|
[4] |
李茜, 姚慧琴. 京津冀城市群大气污染治理效率及影响因素研究[J]. 生态经济, 2018, 34(8):188-192.
|
[4] |
Li Q, Yao H Q. The research of air pollution treatment efficiency and its influencing factors in the Beijing-Tianjin-Hebei urban agglomeration[J]. Ecological Economy, 2018, 34(8):188-192.
|
[5] |
Estoque R C, Murayama Y, Myint S W. Effects of landscape composition and pattern on land surface temperature:An urban heat island study in the megacities of Southeast Asia[J]. Science of the Total Environment, 2017, 577:349-359.
doi: 10.1016/j.scitotenv.2016.10.195
url: https://linkinghub.elsevier.com/retrieve/pii/S0048969716323853
|
[6] |
欧阳晓, 朱翔. 中国城市群城市用地扩张时空动态特征[J]. 地理学报, 2020, 75(3):571-588.
doi: 10.11821/dlxb202003010
|
[6] |
Ouyang X, Zhu X. Spatio-temporal characteristics of urban land expansion in Chinese urban agglomerations[J]. Acta Geographica Sinica, 2020, 75(3):571-588.
doi: 10.11821/dlxb202003010
|
[7] |
Ji J W, Wang S X, Zhou Y, et al. Spatiotemporal change and landscape pattern variation of eco-environmental quality in Jing-Jin-Ji urban agglomeration from 2001 to 2015[J]. IEEE Access, 2020, 8:125534-125548.
doi: 10.1109/Access.6287639
url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
|
[8] |
梁龙武, 王振波, 方创琳, 等. 京津冀城市群城市化与生态环境时空分异及协同发展格局[J]. 生态学报, 2019, 39(4):1212-1225.
|
[8] |
Liang L W, Wang Z B, Fang C L, et al. Spatiotemporal differentiation and coordinated development pattern of urbanization and the ecological environment of the Bejjing-Tianjin-Hebei urban agglomeration[J]. Acta Ecologica Sinica, 2019,39:(4) 1212-1225.
|
[9] |
李平星, 陈雯, 邹露, 等. 基于一体化生态空间格局的土地利用/覆被变化及其生态环境效应——以长三角为例[J]. 环境科学学报, 2021, 41(10):3905-3915.
|
[9] |
Li P X, Chen W, Zou L, et al. Eco-environmental effect of land use/cover change (LUCC) based on integrated ecological space:A case of Yangtze River Delta[J]. Acta Scientiae Circumstantiae, 2021. 41(10):3905-3915.
|
[10] |
王渊, 赵宇豪, 吴健生. 基于Google Earth Engine云计算的城市群生态质量长时序动态监测——以粤港澳大湾区为例[J]. 生态学报, 2020, 40(23):8461-8473.
|
[10] |
Wang Y, Zhao Y H, Wu J S. Dynamic monitoring of long time series of ecological quality in urban agglomerations using Google Earth Engine cloud computing:A case study of the Guangdong-Hong Kong-Macao Greater Bay Area,China[J]. Acta Ecologica Sinica, 2020, 40(23):8461-8473.
|
[11] |
方创琳, 宋吉涛, 张蔷, 等. 中国城市群结构体系的组成与空间分异格局[J]. 地理学报, 2005, 60(5):827-840.
|
[11] |
Fang C L, Song J T, Zhang Q, et al. The formation,development and spatial heterogeneity patterns for the structures system of urban agglomerations in China[J]. Acta Geographica Sinica, 2005, 60(5):827-840.
|
[12] |
王同达, 曹锦雪, 赵永华, 等. 基于PSR模型的陕西省土地生态系统健康评价[J]. 应用生态学报, 2021, 32(5):1563-1572.
doi: 10.13287/j.1001-9332.202105.013
|
[12] |
Wang T D, Cao J X, Zhao Y H, et al. Evaluation of land ecosystem health in Shaanxi Province,Northwest China based on PSR Model[J]. Chinese Journal of Applied Ecology, 2021, 32(5):1563-1572.
|
[13] |
王晓君, 吴敬学, 蒋和平. 中国农村生态环境质量动态评价及未来发展趋势预测[J]. 自然资源学报, 2017, 32(5):864-876.
doi: 10.11849/zrzyxb.20160555
|
[13] |
Wang X J, Wu J X, Jiang H P. Dynamic assessment and trend prediction of rural eco-environmental quality in China[J]. Journal of Natural Resources, 2017, 32(5):864-876.
|
[14] |
牛彦合, 焦胜, 操婷婷, 等. 基于PSR模型的城市多灾种风险评估及规划响应[J]. 城市发展研究, 2022, 29(4):39-48.
|
[14] |
Niu Y H, Jiao S, Cao T T, et al. Urban multi-hazard risk assessment and planning response based on PSR model[J]. Urban Development Studies, 2022, 29(4):39-48.
|
[15] |
孟岩, 赵庚星, 程晋南, 等. 基于MODIS遥感数据和GIS的山东省生态环境状况评价[J]. 中国生态农业学报, 2008(4):1020-1024.
|
[15] |
Meng Y, Zhao G X, Cheng J N, et al. Evaluation of the ecological environment of Shandong Province using MODIS data and GIS platform urban agglomeration[J]. Chinese Journal of Eco-Agriculture, 2008(4):1020-1024.
|
[16] |
程晋南, 赵庚星, 李红, 等. 基于RS和GIS的土地生态环境状况评价及其动态变化[J]. 农业工程学报, 2008, 24(11):83-88.
|
[16] |
Cheng J N, Zhao G X, Li H, et al. Dynamic changes and evaluation of land ecological environment status based on RS and GIS technique[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(11):83-88.
|
[17] |
徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24):7853-7862.
|
[17] |
Xu H Q. A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica, 2013, 33(24):7853-7862.
|
[18] |
宋慧敏, 薛亮. 基于遥感生态指数模型的渭南市生态环境质量动态监测与分析[J]. 应用生态学报, 2016, 27(12):3913-3919.
doi: 10.13287/j.1001-9332.201612.024
|
[18] |
Song H M, Xue L. Dynamic monitoring and analysis of ecological environment in Weinan City,Northwest China based on RSEI model[J]. Chinese Journal of Applied Ecology, 2016, 27(12):3913-3919.
|
[19] |
李妍, 张国钦, 吝涛, 等. 乡镇遥感生态指数时空变化及影响因子研究——以天津市蓟州区为例[J]. 生态学报, 2022, 42(2):474-486.
|
[19] |
Li Y, Zhang G Q, Lin T, et al. The spatiotemporal changes of remote sensing ecological index in towns and the influencing factors:A case study of Jizhou District,Tianjin[J]. Acta Ecologica Sinica, 2022, 42(2):474-486.
|
[20] |
王士远, 张学霞, 朱彤, 等. 长白山自然保护区生态环境质量的遥感评价[J]. 地理科学进展, 2016, 35(10):1269-1278.
doi: 10.18306/dlkxjz.2016.10.010
|
[20] |
Wang S Y, Zhang X X, Zhu T, et al. Assessment of ecological environment quality in the Changbai Mountain Nature Reserve based on remote sensing technology[J]. Progress in Geography, 2016, 35(10):1269-1278.
doi: 10.18306/dlkxjz.2016.10.010
|
[21] |
何盈利, 尤南山, 崔耀平, 等. 2000年来中国生态状况时空变化格局[J]. 自然资源学报, 2021, 36(5):1176-1185.
doi: 10.31497/zrzyxb.20210507
|
[21] |
He Y L, You N S, Cui Y P, et al. Spatio-temporal changes in remote sensing-based ecological index in China since 2000[J]. Journal of Natural Resources, 2021, 36(5):1176-1185.
doi: 10.31497/zrzyxb.20210507
url: http://www.jnr.ac.cn/EN/10.31497/zrzyxb.20210507
|
[22] |
付东杰, 肖寒, 苏奋振, 等. 遥感云计算平台发展及地球科学应用[J]. 遥感学报, 2021, 25(1):220-230.
|
[22] |
Fu D J, Xiao H, Su F Z, et al. Remote sensing cloud computing platform development and earth science application laborative innovation community[J]. National Remote Sensing Bulletin, 2021, 25(1):220-230.
doi: 10.11834/jrs.20210447
url: http://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20210447/
|
[23] |
郑子豪, 吴志峰, 陈颖彪, 等. 基于Google Earth Engine的长三角城市群生态环境变化与城市化特征分析[J]. 生态学报, 2021, 41(2):717-729.
|
[23] |
Zheng Z H, Wu Z F, Chen Y B, et al. Analyzing the ecological environment and urbanization characteristics of the Yangtze River Delta Urban Agglomeration based on Google Earth Engine[J]. Acta Ecologica Sinica, 2021, 41(2):717-729.
|
[24] |
张华, 宋金岳, 李明, 等. 基于GEE的祁连山国家公园生态环境质量评价及成因分析[J]. 生态学杂志, 2021, 40(6):1883-1894.
|
[24] |
Zhang H, Song J Y, Li M, et al. Eco-environmental quality assessment and cause analysis of Qilian Mountain National Park based on GEE[J]. Chinese Journal of Ecology, 2021, 40(6):1883-1894.
|
[25] |
Guo B B, Fang Y L, Jin X B, et al. Monitoring the effects of land consolidation on the ecological environmental quality based on remote sensing:A case study of Chaohu Lake Basin,China[J]. Land Use Policy, 2020, 95(C):104569.
doi: 10.1016/j.landusepol.2020.104569
url: https://linkinghub.elsevier.com/retrieve/pii/S0264837719320186
|
[26] |
Shan W, Jin X B, Ren J, et al. Ecological environment quality assessment based on remote sensing data for land consolidation[J]. Journal of Cleaner Production, 2019, 239:118126.
doi: 10.1016/j.jclepro.2019.118126
url: https://linkinghub.elsevier.com/retrieve/pii/S0959652619329968
|
[27] |
Yue H, Liu Y, Li Y, et al. Eco-environmental quality assessment in China's 35 Major Cities based on remote sensing ecological index[J]. IEEE Access, 2019, 7:51295-51311.
doi: 10.1109/Access.6287639
url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6287639
|
[28] |
杨江燕, 吴田, 潘肖燕, 等. 基于遥感生态指数的雄安新区生态质量评估[J]. 应用生态学报, 2019, 30(1):277-284.
|
[28] |
Yang J Y, Wu T, Pan X Y, et al. Ecological quality assessment of Xiongan New Area based on remote sensing ecological index[J]. Chinese Journal of Applied Ecology, 2019, 30(1):277-284.
|
[29] |
杭鑫, 罗晓春, 曹云, 等. 基于RSEI模型的生态质量评估及城镇化影响——以南京市为例[J]. 应用生态学报, 2020, 31(1):219-229.
doi: 10.13287/j.1001-9332.202001.030
|
[29] |
Hang X, Luo X C, Cao Y, et al. Ecological quality assessment and the impact of urbanization based on RSEI model for Nanjing,Jiangsu Province,China[J]. Chinese Journal of Applied Ecology, 2020, 31(1):219-229.
|
[30] |
王劲峰, 徐成东. 地理探测器:原理与展望[J]. 地理学报, 2017, 72(1):116-134.
doi: 10.11821/dlxb201701010
|
[30] |
Wang J F, Xu C D. Geodetector:Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1):116-134.
|
[31] |
欧阳晓, 朱翔, 贺清云. 基于生态系统服务和生态系统健康的生态风险评价——以长株潭城市群为例[J]. 生态学报, 2020, 40(16):5478-5489.
|
[31] |
Ouyang X, Zhu X, He Q Y. Incorporating ecosystem services with ecosystem health for ecological risk assessment:Case study in Changsha-Zhuzhou-Xiangtan urban agglomeration,China[J]. Acta Ecologica Sinica, 2020, 40(16):5478-5489.
|
[32] |
He Y H, Lin Y, Zhou G H, et al. Spatial pattern and drivers of urbanization in China’s mid-level developing urban agglomeration:A case study of Chang-Zhu-Tan[J]. Regional Sustainability, 2021, 2(1):83-97.
doi: 10.1016/j.regsus.2020.12.001
url: https://linkinghub.elsevier.com/retrieve/pii/S2666660X20300207
|
[33] |
施婷婷, 徐涵秋, 唐菲. 经济快速增长区建筑用地变化及其对生态质量的影响——以福建晋江为例[J]. 应用生态学报, 2017, 28(4):1317-1325.
doi: 10.13287/j.1001-9332.201704.014
|
[33] |
Shi T T, Xu H Q, Tang F. Built-up land change and its impact on ecological quality in a fast-growing economic zone:Jinjiang County,Fujian Province,China[J]. Chinese Journal of Applied Ecology, 2017, 28(4):1317-1325.
|
[34] |
Xu H Q, Wang Y F, Guan H D, et al. Detecting ecological changes with a remote sensing based ecological index (RSEI) produced time series and change vector analysis[J]. Remote Sensing, 2019, 11(20):2345.
doi: 10.3390/rs11202345
url: https://www.mdpi.com/2072-4292/11/20/2345
|
[35] |
Aditya F, Gusmayanti E, Sudrajat J. Rainfall trend analysis using Mann-Kendall and Sen’s slope estimator test in West Kalimantan[J]. IOP Conference Series:Earth and Environmental Science, 2021, 893(1):012006.
doi: 10.1088/1755-1315/893/1/012006
|
[36] |
杨素英, 孙凤华, 马建中. 增暖背景下中国东北地区极端降水事件的演变特征[J]. 地理科学, 2008, 28(2):224-228.
|
[36] |
Yang S Y, Sun F H, Ma J Z. Evolvement of precipitation extremes in Northeast China on the background of climate warming[J]. Scientia Geographica Sinica, 2008, 28(2):224-228.
doi: 10.13249/j.cnki.sgs.2008.02.224
|
[37] |
Wang J F, Li X H, Christakos G, et al. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region,China[J]. International Journal of Geographical Information Science, 2010, 24(1):107-127.
doi: 10.1080/13658810802443457
url: http://www.tandfonline.com/doi/abs/10.1080/13658810802443457
|
[38] |
孔玲玲, 冯险峰, 武爽, 等. 拉萨城市圈1994—2017年生态质量的时空动态监测及驱动力分析[J]. 地理科学进展, 2022, 41(3):437-450.
doi: 10.18306/dlkxjz.2022.03.007
|
[38] |
Kong L L, Feng X F, Wu S, et al. Spatiotemporal dynamics and driving factor analysis of ecological quality change in the Lhasa urban circle from 1994 to 2017[J]. Progress in Geography, 2022, 41(3):437-450.
doi: 10.18306/dlkxjz.2022.03.007
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|