Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (4) : 292-300     DOI: 10.6046/zrzyyg.2022272
|
Crops identification based on Sentinel-2 data with multi-feature optimization
CHEN Jian1,3(), LI Hu1,3, LIU Yufeng2(), CHANG Zhu1,3, HAN Weijie1,3, LIU Saisai2
1. College of Geography and Tourism, Anhui Normal University, Wuhu 241003, China
2. College of Computer and Information Engineering, Chuzhou University, Chuzhou 239000, China
3. Engineering Technology Research Center of Resources Environment and GIS, Wuhu 241003, China
Download: PDF(3736 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Focusing on Quanjiao County in Chuzhou City, this study determined 90 features, including spectral, traditional vegetation index, red-edge vegetation index, and texture features, from Sentinel-2 satellite data on the GEE platform. This study examined the effects of diverse feature optimization algorithms combined with a random forest classifier on identifying crop planting types in the study area. These algorithms included the random forest-recursive feature elimination (RF_RFE) algorithm, the Relief F algorithm based on Relief expansion, and the correlation-based feature selection (CFS) algorithm. On this basis, this study further analyzed the classification effects of the optimal feature optimization algorithm in various machine learning classification approaches. The study demonstrates that: ① Spectral features proved to be the most crucial for crop identification, followed by red-edge index features, and texture features manifested minimal effects; ② RF_RFE-based remote sensing identification results exhibited the highest accuracy, with overall accuracy of 92% and a Kappa coefficient of 0.89; ③ Under the RF_RFE feature optimization method, the RF’s Kappa coefficient was 0.01 and 0.41 higher than that of the support vector machine (SVM) and the minimum distance classification (MDC), respectively. This indicates that the RF_RFE feature optimization method based on multiple features, combined with the RF algorithm, can effectively enhance the accuracy and efficiency of remote sensing identification of crops.

Keywords Google Earth Engine      Sentinel-2      crop identification      feature optimization      random forest     
ZTFLH:  TP79  
Issue Date: 21 December 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian CHEN
Hu LI
Yufeng LIU
Zhu CHANG
Weijie HAN
Saisai LIU
Cite this article:   
Jian CHEN,Hu LI,Yufeng LIU, et al. Crops identification based on Sentinel-2 data with multi-feature optimization[J]. Remote Sensing for Natural Resources, 2023, 35(4): 292-300.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022272     OR     https://www.gtzyyg.com/EN/Y2023/V35/I4/292
Fig.1  Geographical location of the study area and its sample distribution
时间 10月 11月 12月 来年1月 2月 3月 4月 5月 6月
小麦 播种 出苗 分藥 越冬 返青 拔节 孕穗 成熟
油菜 播种 移栽 越冬 现蕾 初花 中花 成熟
冬闲田 水稻成熟 空闲 水稻播种 移栽
Tab.1  The growth cycle of mid-season crops in Quanjiao County
Fig.2  Technical flow chart of crop information extraction in the study area
特征变量 指数 特征公式及说明 参考文献 特征数目
光谱特征 B* B2,B3,B4,B5,B6,B7,B8,B8A,B11,B12 30
传统植被指数 归一化植被指数(NDVI) NDVI=(B8-B4)/(B8+B4) Ni等[13] 18
陆地表面水分指数(LSWI) LSWI=(B8-B11)/(B8+B11) Ni等[13]
增强型植被指数(EVI) EVI=2.5(B8-B4)/(B8+6B4-7.5B2+1) Ni等[13]
土壤调整植被指数(SAVI) SAVI=(B7-B3)/(B7+B3-0.5)*(1+0.5) 王李娟等[14]
比值植被指数(RVI) RVI=B7/B3 王李娟等[14]
归一化差异耕作指数(NDTI) NDTI=(B11-B12)/(B11-B12) 熊皓丽等[15]
红边指数特征 归一化植被指数红边1(NDVIre1) NDVIre1=(B8A-B5)/(B8A+B5) 张磊等[16] 18
归一化植被指数红边2(NDVIre2) NDVIre2=(B8A-B6)/(B8A+B6) 张磊等[16]
归一化植被指数红边3(NDVIre3) NDVIre3=(B8A-B7)/(B8A+B7) 张磊等[16]
新型倒红边叶绿素指数(IRECI) IRECI=(B7-B4)/(B5/B6) 熊皓丽等[15]
红边叶绿素指数(Cire) Cire=B7/B5-1 王李娟等[14]
地面叶绿素指数(MTCI) MTCI=(B6-B5)/(B5-B4) 熊皓丽等[15]
纹理特征 Contrast 对比度 张磊等[16]、熊皓丽等[15] 24
Asm 角二阶矩
Corr 相关性
Idm 逆差距
Ent
Var 方差
Dvar 差方差
Diss 不相似性
总计 90
Tab.2  Crop remote sensing identification feature set
Fig.3  The Kappa coefficient for different numbers of features
特征 2022/02/25 2022/03/12 2022/04/21 特征个数
Relief F LSWI0225,NDTI0225,
pc1_dvar0225,pc1_diss0225,
pc1_contrast0225
NDTI0312,NDVIre30312,
LSWI031,pc1_dvar0312,
pc1_diss0312,pc1_contrast0312
B110421,NDVIre20421,
NDVI0421,NDTI0421,LSWI0421, pc1_diss0421,pc1_dvar0421,
pc1_cotrast0421
19
CFS B30225,EVI0225,LSWI0225,
pc1_var0225,pc1_corr0225,
MTCI0225
B30312, B40312,B50312,
NDVIre30312,MTCI0312,
EVI0312,NDVIre20312,
pc1_corr0312,
pc1_contrast0312,pc1_var0312
B50421,B8A0421,B110421,
LSWI0421,MTCI0421, B40421,
NDTI0421,EVI0421,
NDVIre20421,pc1_corr0421,
NDVIre30421
27
RF_RFE B20225,B110225,LSWI0225,
NDTI0225
B20312, B30312,B50312,B60312,B110312, pc1_idm0312,NDTI0312, EVI0312 B20421,B30421,B50421,B60421,
B8A0421,B70421,B110421,
B120421,NDVIre20421
21
Tab.3  Characteristic distribution of 3 optimization results
Fig.4  The importance score for feature names and their correspondings
不同的特征
优选方法
RF_RFE CFS Relief F
评价指标 PA/% UA/% PA/% UA/% PA/% UA/%
油菜 83.5 88.8 83.0 88.7 80.0 82.9
小麦 96.2 93.2 95.0 92.5 94.1 91.9
OA/% 91.7 91.5 87.71
Kappa 0.89 0.88 0.83
Tab.4  Accuracy assessment of different feature optimization methods
数据 样地一 样地二 样地三
高分一号
Relief F
CFS
RF_RFE
Tab.5  Local result plots of different feature optimization methods
Fig.5  Spatial distribution of crops in the study area based on different machine learning methods under RF_RFE
机器学习方法 RF SVM MDC
评价指标 PA/% UA/% PA/% UA/% PA/% UA/%
油菜 83.5 88.8 84.7 83.0 80.3 63.5
小麦 96.2 93.2 91.1 91.3 70.8 65.4
OA/% 91.7 91.0 61.2
Kappa 0.89 0.88 0.48
Tab.6  RF_RFE characteristics are preferably based on different crop classification accuracy of machine learning algorithms
[1] 黄健熙, 武思杰, 刘兴权, 等. 基于遥感信息与作物模型集合卡尔曼滤波同化的区域冬小麦产量预测[J]. 农业工程学报, 2012, 28(4):142-148.
[1] Huang J X, Wu S J, Liu X Q, et al. Regional winter wheat yield forecasting based on assimilation of remote sensing data and crop growth model with Ensemble Kalman method[J]. Transactions of the Chinese Society of Agricultural Engineeing, 2012, 28(4):142-148.
[2] 王利民, 刘佳, 季富华. 中国农业遥感技术应用现状及发展趋势[J]. 中国农学通报, 2021, 37(25):138-143.
doi: 10.11924/j.issn.1000-6850.casb20190700361
[2] Wang L M, Liu J, Ji F H. Application status and development trend of agriculture remote sensing technology application in China[J]. Chinese Agricultural Science Bulletin, 2021, 37(25):138-143.
[3] 贾坤, 李强子. 农作物遥感分类特征变量选择研究现状与展望[J]. 资源科学, 2013, 35(12):2507-2516.
[3] Jia K, Li Q Z. Review of features selection in crop classification using remote sensing data[J]. Resources Science, 2013, 35(12):2507-2516.
[4] 程彬. 基于支持向量机的乾安县土地利用遥感分类研究[J]. 长春师范大学学报, 2017, 36(12):86-88.
[4] Cheng B. Land use information extraction based on support vector machine using multitemporal remote sensing in Qian’an County[J]. Journal of Changchun Normal University, 2017, 36(12):86-88.
[5] 王德军, 姜琦刚, 李远华, 等. 基于Sentinel-2A/B时序数据与随机森林算法的农耕区土地利用分类[J]. 国土资源遥感, 2020, 32(4):236-243.doi:10.6046/gtzyyg.2020.04.29.
[5] Wang D J, Jiang Q G, Li Y H, et al. Land use classification of farming areas based on time series Sentinel-2A/B data and random forest algorithm[J]. Remote Sensing of Land and Resources, 2020, 32(4):236-243.doi:10.6046/gtzyyg.2020.04.29.
[6] 杨欢, 邓帆, 张佳华, 等. 基于MODIS EVI的江汉平原油菜和冬小麦种植信息提取研究[J]. 国土资源遥感, 2020, 32(3):208-215.doi:10.6046/gtzyyg.2020.03.27.
[6] Yang H, Deng F, Zhang J H, et al. A study of information extraction of rape and winter wheat planting in Jianghan Plain based on MODIS EVI[J]. Remote Sensing of Land and Resources, 2020, 32(3):208-215.doi:10.6046/gtzyyg.2020.03.27.
[7] 梁继, 郑镇炜, 夏诗婷, 等. 高分六号红边特征的农作物识别与评估[J]. 遥感学报, 2020, 24(10):1168-1179.
[7] Liang J, Zheng Z W, Xia S T, et al. Crop recognition and evaluationusing red edge features of GF-6 satellite[J]. Journal of Remote Sensing, 2020, 24(10):1168-1179.
[8] 周小成, 郑磊, 黄洪宇. 基于多特征优选的无人机可见光遥感林分类型分类[J]. 林业科学, 2021, 57(6):24-36.
[8] Zhou X C, Zheng L, Huang H Y. Classification of forest stand based on multi-feature optimization of UAV visible light remote sensing[J]. Forestry Science, 2021, 57(6):24-36.
[9] 刘家福, 李林峰, 任春颖, 等. 基于特征优选的随机森林模型的黄河口滨海湿地信息提取研究[J]. 湿地科学, 2018, 16(2):97-105.
[9] Liu J F, Li L F, Ren C Y, et al. Information extraction of coastal wetlands in Yellow River Estuary by optimal feature-based random forest model[J]. Journal of Wetland Science, 2018, 16(2):97-105.
[10] 刘莹, 孟庆岩, 王永吉, 等. 基于特征优选与支持向量机的不透水面覆盖度估算方法[J]. 地理与地理信息科学, 2018, 34(1):24-31,3.
[10] Liu Y, Meng Q Y, Wang Y J, et al. A method for estimating impervious surface percentage based on feature optimization and SVM[J]. Geography and Geoinformatics Science, 2018, 34(1):24-31,3.
[11] 张东彦, 杨玉莹, 黄林生, 等. 结合Sentinel-2影像和特征优选模型提取大豆种植区[J]. 农业工程学报, 2021, 37(9):110-119.
[11] Zhang D Y, Yang Y Y, Huang L S, et al. Extraction of soybean planting areas combining Sentinel-2 images and optimized feature model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9):110-119.
[12] 张文博, 孔金玲, 杨园园, 等. 面向对象的旱区植被遥感精细分类研究[J]. 测绘科学, 2021, 46(1):136-140,183.
[12] Zhang W B, Kong J L, Yang Y Y, et al. Fine vegetation classification of remote sensing in arid areas based on object-oriented method[J]. Science of Surveying and Mapping, 2021, 46(1):136-140,183.
[13] Ni R, Tian J, Li X, et al. An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google Earth Engine[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021,178,282-296.
[14] 王李娟, 孔钰如, 杨小冬, 等. 基于特征优选随机森林算法的农耕区土地利用分类[J]. 农业工程学报, 2020, 36(4):244-250.
[14] Wang L J, Kong Y R, Yang X D, et al. Classification of land use in farming areas based on feature optimization random forest algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(4):244-250.
[15] 熊皓丽, 周小成, 汪小钦, 等. 基于GEE云平台的福建省10 m茶园专题空间分布制图[J]. 地球信息科学学报, 2021, 23(7):1325-1337.
[15] Xiong H L, Zhou X C, Wang X Q, et al. Mapping the spatial distribution of tea plantations with 10 m resolution in Fujian Province using google earth engine[J]. Journal of Geoinformatics Science, 2021, 23(7):1325-1337.
[16] 张磊, 宫兆宁, 王启为, 等. Sentinel-2影像多特征优选的黄河三角洲湿地信息提取[J]. 遥感学报, 2019, 23(2):313-326.
[16] Zhang L, Gong Z N, Wang Q W, et al. Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images[J]. Journal of Remote Sensing, 2019, 23(2):313-326.
[17] Haralick R M, Shanmugam K, Dinstiein I H. Textural features for image classification[J]. IEEE Transactions on Systems,Man,and Cybernetics, 1973, 3(6):610-621.
[18] 王庚泽, 靳海亮, 顾晓鹤, 等. 基于改进分离阈值特征优选的秋季作物遥感分类[J]. 农业机械学报, 2021, 52(2):199-210.
[18] Wang G Z, Jin H L, Gu X H, et al. Remote sensing classification of autumn crops based on hybrid feature selection model combining with relief F and improved separability and thresholds[J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(2):199-210.
[19] 高国龙, 杜华强, 韩凝, 等. 基于特征优选的面向对象毛竹林分布信息提取[J]. 林业科学, 2016, 52(9):77-85.
[19] Gao G L, Du H Q, Han N, et al. Mapping of moso bamboo forest using object-based approach based on the optimal features[J]. Forestry Sciences, 2016, 52(9):77-85.
[20] Millard K, Richardson M. On the importance of training data sample selection in random forest image classification:A case study in peatland ecosystem mapping[J]. Remote Sensing, 2015, 7(7):8489-8515.
doi: 10.3390/rs70708489 url: http://www.mdpi.com/2072-4292/7/7/8489
[1] DU Xiaochuan, LOU Debo, XU Lingang, FAN Yinglin, ZHANG Lin, LI Wanyue. Extracting granite pegmatite information based on GF-2 images and the random forest algorithm[J]. Remote Sensing for Natural Resources, 2023, 35(4): 53-60.
[2] YU Shaohuai, XU Qiao, YU Fei. Method for assessing landslide susceptibility of highways in mountainous areas based on optical and SAR remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(4): 81-89.
[3] ZHONG Xiaoyong, LI Hongyi, GUO Dongyan, XIE Modian, ZHAO Wanru, HU Bifeng. Spatial distribution prediction of soil pH in arable land of Jiangxi Province based on multi-source environmental variables and the random forest model[J]. Remote Sensing for Natural Resources, 2023, 35(4): 178-185.
[4] HE Suling, HE Zenghong, PAN Jiya, WANG Jinliang. County-scale land use/land cover simulation based on multiple models[J]. Remote Sensing for Natural Resources, 2023, 35(4): 201-213.
[5] LI Guangzhe, WANG Hao, CAO Yinxuan, ZHANG Xiaoyu, NING Xiaogang. Spatio-temporal evolution and influencing factors of ecological environment quality in the Changsha-Zhuzhou-Xiangtan urban agglomeration[J]. Remote Sensing for Natural Resources, 2023, 35(4): 244-254.
[6] WU Weichao, YE Fawang. Cloud detection of Sentinel-2 images for multiple backgrounds[J]. Remote Sensing for Natural Resources, 2023, 35(3): 124-133.
[7] XI Lei, SHU Qingtai, SUN Yang, HUANG Jinjun, SONG Hanyue. Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China[J]. Remote Sensing for Natural Resources, 2023, 35(3): 160-169.
[8] PARIHA Helili, ZAN Mei. Spatio-temporal changes and influencing factors of ecological environments in oasis cities of arid regions[J]. Remote Sensing for Natural Resources, 2023, 35(3): 201-211.
[9] LIANG Jintao, CHEN Chao, ZHANG Zili, LIU Zhisong. A random forest-based method integrating indices and principal components for classifying remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(3): 35-42.
[10] LI Zhixin, WANG Mengfei, JIA Weijie, JI Song, WANG Yufei. A method for identifying the number of building floors based on shadow information[J]. Remote Sensing for Natural Resources, 2023, 35(3): 97-106.
[11] HOU Yingzhuo, JI Ling, XING Qianguo, SHENG Dezhi. Satellite remote sensing-assisted comparative monitoring of dynamic characteristics of macroalgae aquaculture in Weihai City, Shandong Province, China[J]. Remote Sensing for Natural Resources, 2023, 35(2): 34-41.
[12] YU Sen, JIA Mingming, CHEN Gao, LU Yingying, LI Yi, ZHANG Bochun, LU Chunyan, LI Huiying. A study of the disturbance to mangrove forests in Dongzhaigang, Hainan based on LandTrendr[J]. Remote Sensing for Natural Resources, 2023, 35(2): 42-49.
[13] ZHU Lin, HUANG Yuling, YANG Gang, SUN Weiwei, CHEN Chao, HUANG Ke. Information extraction and spatio-temporal evolution analysis of the coastline in Hangzhou Bay based on Google Earth Engine and remote sensing technology[J]. Remote Sensing for Natural Resources, 2023, 35(2): 50-60.
[14] WU Yuxin, WANG Juanle, HAN Baomin, YAN Xinrong. Forest classification for Motuo County: A method based on spatio-temporal-spectral characteristics[J]. Remote Sensing for Natural Resources, 2023, 35(1): 180-188.
[15] TIAN Chen, ZHANG Jinlong, JIN Yirong, DONG Shiyuan, WANG Bin, ZHANG Naixiang. A remote sensing classification method for cyanobacteria using Bayesian optimization algorithm[J]. Remote Sensing for Natural Resources, 2023, 35(1): 49-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech