Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (2) : 218-228     DOI: 10.6046/zrzyyg.2023040
|
Analysis of the spatio-temporal variations in vegetation phenology in Beijing based on MODIS time series data
YAO Jiahui(), DING Haiyong()
School of Remote Sensing & Geomatics Engineering, Nanjing University of Information Science & Technology, Nanjing 211800, China
Download: PDF(15096 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Vegetation can indicate the changes in ecological environments. Analyzing the spatio-temporal variations and influencing factors of vegetation phenology holds critical significance for exploring the carbon, water, and energy balance of terrestrial ecosystems. In this study, the MOD13Q1 EVI dataset was employed to extract the start of season (SOS), the growing season length (GSL), and the end of season (EOS) for vegetation in Beijing from 2001 to 2020 using the double logistic (D-L) function fitting method and the dynamic threshold method. The spatio-temporal variations of vegetation phenology in urban and rural areas of Beijing were analyzed by constructing an urban-rural gradient zone. The response of vegetation phenological parameters to climate factors like temperature, precipitation, sunshine, and wind speed, as well as urban heat island intensity and urbanization, was investigated through regression and trend analyses. The results show that from 2001 to 2020, the vegetation phenology of Beijing manifested a trend of earlier SOS, extended GSL, and delayed EOS. Compared to grassland, woodland and shrubs manifested earlier SOS and later EOS, suggesting that the phenology of woody plants started earlier and ended later. As revealed by the relationship between climate factors and phenology, temperature, precipitation, sunshine, and wind speed all displayed certain effects on vegetation phenology in Beijing, with SOS and EOS being the most sensitive to sunshine and wind speed, respectively. The vegetation phenology was characterized by a significant gradient change along the urban-suburban-rural direction. Compared to the rural area, the urban area showed SOS 12.2 d earlier and EOS 18.9 d later on average. The urban nighttime heat island intensity was significantly correlated with the SOS of vegetation in the urban-rural gradient zone (p<0.01). Moreover, the SOS, GSL, and EOS were significantly linearly correlated with population density, urban built-up area, and GDP per square kilometer of land (p<0.01). Therefore, urbanization played a significant role in advancing SOS, extending GSL, and delaying EOS of vegetation phenology in Beijing.

Keywords vegetation phenology      climate change      urbanization      urban heat island effect     
ZTFLH:  TP79  
Issue Date: 14 June 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiahui YAO
Haiyong DING
Cite this article:   
Jiahui YAO,Haiyong DING. Analysis of the spatio-temporal variations in vegetation phenology in Beijing based on MODIS time series data[J]. Remote Sensing for Natural Resources, 2024, 36(2): 218-228.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023040     OR     https://www.gtzyyg.com/EN/Y2024/V36/I2/218
Fig.1  Land cover type map of Beijing in 2020
Fig.2  Urban area and buffer zones of Beijing in 2000
数据集 数据来源 数据属性 数据类型 时间范围
MOD13Q1 美国国家航空航天局 时间分辨率为16 d,空间分辨率为250 m EVI数据 2001—2020年
MOD11A2 美国国家航空航天局 时间分辨率为8 d,空间分辨率为1 000 m 白天地表温度和夜晚地表温度 2001—2020年
MCD12Q2 美国国家航空航天局 空间分辨率为500 m 植被生长季开始期和结束期 2001—2019年
气候数据 中国地面气候资料日值数据集V3.0 中国地面699个国家级基准、基本站 气温、降水、日照、风速 2001—2020年
土地利用覆盖数据 中国逐年土地覆盖数据集CLCD 空间分辨率为30 m 耕地、草地、灌木林、林地 2001—2020年
城市建成区数据 全球城市边界(Global Urban Boundary-GUB)数据集 空间分辨率为30 m ———— 2000年
城市统计数据 中国城市建设统计年鉴 ———— 人口密度、城市区建成区面积、地均GDP 2001—2020年
Tab.1  Data sources and descriptions
Fig.3  Phenological parameter validation
Fig.4  Spatial distribution of the mean values of vegetation phenology in Beijing from 2001 to 2020
Fig.5  Interannual variation of vegetation phenology in Beijing from 2001 to 2020
Fig.6  Spatial variation trend and significant area of vegetation phenology in Beijing from 2001 to 2020
Fig.7  Interannual variation of phenology in different vegetation cover types in Beijing from 2001 to 2020
Fig.8  Interannual variation of vegetation phenology in different buffer zones in Beijing from 2001 to 2020
Fig.9  Variation of land surface temperature along the urban-rural gradient
Fig.10  Relationship between vegetation phenology differences and UHII differences in each region on urban-rural gradient zones
UHII 城区 郊区 农村 年均
[0,5) km [5,10) km [10,15) km [15,20) km
SOS -0.508*① -0.389 -0.307 -0.254 -0.228 -0.257 -0.324
GSL 0.427 0.356 0.140 0.021 -0.045 -0.040 0.123
EOS 0.314 0.250 -0.013 -0.159 -0.239 -0.277 -0.053
Tab.2  Correlation between daytime UHII and vegetation phenology in each region
UHII 城区 郊区 农村 年均
[0,5) km [5,10) km [10,15) km [15,20) km
SOS -0.675**① -0.679** -0.626** -0.626** -0.593** -0.573** -0.630**
GSL 0.643** 0.604** 0.499* 0.487* 0.473* 0.403 0.490*
EOS 0.494* 0.417 0.253 0.246 0.229 0.154 0.262
Tab.3  Correlation between night UHII and vegetation phenology in each region
Fig.11  Relationship between vegetation phenology and urbanization factors in Beijing
植被物
候参数
缓冲区 人口密度 城市建成区面积 地均GDP
SOS 城区 -0.634**① -0.639** -0.624**
郊区 -0.650** -0.587** -0.654**
农村 -0.624** -0.584** -0.627**
GSL 城区 0.696** 0.738** 0.673**
郊区 0.852** 0.786** 0.855**
农村 0.765** 0.728** 0.748**
EOS 城区 0.673** 0.685** 0.665**
郊区 0.784** 0.751** 0.788**
农村 0.765** 0.728** 0.748**
Tab.4  Correlation between urbanization factors and vegetation phenology in urban, suburban and rural areas
气候因子 城区 郊区 农村
[0,
5) km
[5,
10) km
[10,
15) km
[15,
20] km
最高气温 -0.448*① -0.375 -0.367 -0.340 -0.357 -0.377
最低气温 -0.256 -0.137 -0.116 -0.166 -0.150 -0.177
降水 -0.291 -0.374 -0.257 -0.315 -0.361 -0.389
日照 -0.372 -0.451* -0.512* -0.475* -0.456* -0.426
风速 -0.168 -0.261 -0.323 -0.246 -0.161 -0.179
Tab.5  Correlation between climate factors and SOS in different buffer zones
气候因子 城区 郊区 农村
[0,
5) km
[5,
10) km
[10,
15) km
[15,
20] km
最高气温 0.397 0.403 0.418 0.452*① 0.461* 0.459*
最低气温 0.166 0.134 0.171 0.176 0.201 0.220
降水 0.494* 0.641** 0.593** 0.533* 0.516* 0.527*
日照 -0.0019 -0.033 0.037 0.054 0.029 0.070
风速 0.690** 0.833** 0.822** 0.782** 0.754** 0.768**
Tab.6  Correlation between climate factors and EOS in different buffer zones
[1] 曹沛雨, 张雷明, 李胜功, 等. 植被物候观测与指标提取方法研究进展[J]. 地球科学进展, 2016, 31(4):365-376.
doi: 10.11867/j.issn.1001-8166.2016.04.0365.
[1] Cao P Y, Zhang L M, Li S G, et al. Review on vegetation phenology observation and phenological index extraction[J]. Advances in Earth Science, 2016, 31(4):365-376.
doi: 10.11867/j.issn.1001-8166.2016.04.0365.
[2] 付永硕, 李昕熹, 周轩成, 等. 全球变化背景下的植物物候模型研究进展与展望[J]. 中国科学:地球科学, 2020, 50(9):1206-1218.
[2] Fu Y S, LI X X, Zhou X C, et al. Progress in plant phenology modeling under global climate change[J]. Scientia Sinica(Terrae), 2020, 63:1237-1247.
[3] 卜亚勤, 丁海勇. 北京植被物候时空变化及其对城市化的响应[J]. 遥感信息, 2022, 37(2):112-118.
[3] Bu Y Q, Ding H Y. Spatiotemporal variation of vegetation phenology and its response to urbanization in Beijing[J]. Remote Sensing Information, 2022, 37(2):112-118.
[4] 李婷婷, 郭增长, 马超. 中国第二、三级阶梯地形过渡带山前植被物候时空变化探析[J]. 地理研究, 2022, 41(11):3000-3020.
doi: 10.11821/dlyj020211206
[4] Li T T, Guo Z Z, Ma C. Spatiotemporal changes of piedmont phenology in the transitional zone between the second and third steps,China[J]. Geographical Research, 2022, 41(11):3000-3020.
[5] Jonsson P, Eklundh L. Seasonality extraction by function fitting to time-series of satellite sensor data[J]. IEEE Transactions Geoscience and Remote Sensing, 2002, 40(8):1824-1832.
[6] 孙梦鑫, 张岳, 辛宇, 等. 川西高原近20 a植被物候变化及其对气候变化的响应[J]. 生态环境学报, 2022, 31(7):1326-1339.
doi: 10.16258/j.cnki.1674-5906.2022.07.005
[6] Sun M X, Zhang Y, Xin Y, et al. Changes of vegetation phenology and its response to climate change in the west Sichuan Plateau in the past 20 years[J]. Ecology and Environmental Sciences, 2022, 31(7):1326-1339
[7] 张仁平, 郭靖, 马晓芳, 等. 基于MODIS数据的新疆草地物候提取方法及变化趋势分析[J]. 草业学报, 2022, 31(1):1-12.
doi: 10.11686/cyxb2020510
[7] Zhang R P, Guo J, Ma X F, et al. Grassland phenology extraction for Xinjiang Province and trend analysis using MODIS data[J]. Acta Prataculturae Sinica, 2022, 31(1):1-12.
[8] Shen M G, Piao S L, Cong N, et al. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau[J]. Global Change Biology, 2015, 21(10):3647-3656.
doi: 10.1111/gcb.12961 pmid: 25926356
[9] Wang C, Cao R Y, Chen J, et al. Temperature sensitivity of spring vegetation phenology correlates to within-spring warming speed over the Northern Hemisphere[J]. Ecological Indicators, 2015, 50:62-68.
[10] 魏晓帅, 高永龙, 范雅倩, 等. 北京植被净初级生产力对物候变化的响应[J]. 农业工程学报, 2022, 38(18):167-175.
[10] Wei X S, Gao Y L, Fan Y Q, et al. Responses of the net primary productivity of vegetation to phenological changes in Beijing of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(18):167-175.
[11] 代武君, 金慧颖, 张玉红, 等. 植物物候学研究进展[J]. 生态学报, 2020, 40(19):6705-6719.
[11] Dai W J, Jin H Y, Zhang Y H, et al. Advances in plant phenology[J]. Acta Ecologica Sinica, 2020, 40(19):6705-6719.
[12] Zhang Q, Kong D D, Shi P J, et al. Vegetation phenology on the Qinghai-Tibetan Plateau and its response to climate change(1982-2013)[J]. Agricultural and Forest Meteorology, 2018, 248:408-417.
[13] Gao X, Zhao D. Impacts of climate change on vegetation phenology over the Great Lakes Region of Central Asia from 1982 to 2014[J]. The Science of the Total Environment, 2022, 845:157227.
[14] 钟巧, 焦黎, 李稚, 等. 博斯腾湖流域潜在蒸散发时空演变及归因分析[J]. 干旱区地理, 2019, 42(1):103-112.
[14] Zhong Q, Jiao L, Li Z, et al. Spatial and temporal changes of potential evapotranspiration and its attribution in the Bosten Lake Basin[J]. Arid Land Geography, 2019, 42(1):103-112.
[15] 胡明新, 周广胜, 吕晓敏, 等. 温度和光周期协同作用对蒙古栎幼苗春季物候的影响[J]. 生态学报, 2021, 41(7):2816-2825.
[15] Hu M X, Zhou G S, Lyu X M, et al. Interactive effects of different warming and changing photoperiod on spring phenology of Quercus mongolicus seedlings[J]. Acta Ecologica Sinica, 2021, 41(7):2816-2825.
[16] 李耀斌, 张远东, 顾峰雪, 等. 中国温带草原和荒漠区域春季物候的变化及其敏感性分析[J]. 林业科学研究, 2019, 32(4):1-10.
[16] Li Y B, Zhang Y D, Gu F X, et al. Changes of spring phenology and sensitivity analysis in temperate grassland and desert zones of China[J]. Forest Research, 2019, 32(4):1-10.
[17] Zhou D C, Zhao S Q, Zhang L X, et al. Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32 major cities[J]. Remote Sensing of Environment, 2016, 176:272-281.
[18] Li X C, Zhou Y Y, Asrar G R, et al. Response of vegetation phenology to urbanization in the conterminous United States[J]. Global Change Biology, 2017, 23(7):2818-2830.
doi: 10.1111/gcb.13562 pmid: 27988975
[19] Mathew A, Khandelwal S, Kaul N. Investigating spatial and seasonal variations of urban heat island effect over Jaipur city and its relationship with vegetation,urbanization and elevation parameters[J]. Sustainable Cities and Society, 2017, 35:157-177.
[20] 张聪聪, 孟丹, 李小娟. 京津冀地区植被物候时空变化及其对城市化的响应[J]. 生态学报, 2023, 43(1):249-262.
[20] Zhang C C, Meng D, Li X J. Spatial and temporal changes of vegetation phenology and its response to urbanization in the Beijing-Tianjin-Hebei region[J]. Acta Ecologica Sinica, 2023, 43(1):249-262.
[21] 胡召玲, 戴慧, 侯飞, 等. 中国东北城乡植被物候时空变化及其对地表温度的响应[J]. 生态学报, 2020, 40(12):4137-4145.
[21] Hu Z L, Dai H, Hou F, et al. Spatio-temporal change of urban-rural vegetation phenology and its response to land surface temperature in Northeast China[J]. Acta Ecologica Sinica, 2020, 40(12):4137-4145.
[22] 蔡红艳, 杨小唤, 张树文. 植物物候对城市热岛响应的研究进展[J]. 生态学杂志, 2014, 33(1):221-228.
[22] Cai H Y, Yang X H, Zhang S W. Research advances in plant phenological responses to urban heat island[J]. Chinese Journal of Ecology, 2014, 33(1):221-228.
[23] Yang J, Huang X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019[J]. Earth System Science Data, 2021, 13(8):3907-3925.
[24] Li X C, Gong P, Zhou Y Y, et al. Mapping global urban boundaries from the global artificial impervious area (GAIA) data[J]. Environmental Research Letters. 2020. 15(9):094044.
[25] 丁海勇, 卜亚勤, 徐路明. 长三角地区植被物候时空变化及其对城市化的响应[J]. 安全与环境学报, 2021, 21(3):1352-1360.
[25] Ding H Y, Bu Y Q, Xu L M. Spatial and temporal variation of the plant phenology and its response to the urbanization trend in the Yangtze River delta[J]. Journal of Safety and Environment, 2021, 21(3):1352-1360.
[26] 韩红珠, 白建军, 张波, 等. 基于 MODIS 时序的陕西省植被物候时空变化特征分析[J]. 国土资源遥感, 2018, 30(4):125-131.doi:10.6046/gtzyyg.2018.04.19.
[26] Han H Z, Bai J J, Zhang B, et al. Spatial-temporal characteristics of vegetation phenology in Shaanxi Province based on MODIS time series[J]. Remote Sensing for Natural Resources, 2018,(4):125-131.doi:10.6046/gtzyyg.2018.04.19.
[27] 周稳, 迟永刚, 周蕾. 基于日光诱导叶绿素荧光的北半球森林物候研究[J]. 植物生态学报, 2021, 45(4):345-354.
[27] Zhou W, Chi Y G, Zhou L. Vegetation phenology in the Northern Hemisphere based on the solar-induced chlorophyll fluorescence[J]. Chinese Journal of Plant Ecology, 2021, 45(4):345-354.
[28] 周玉科, 刘建文. 基于MODIS NDVI和多方法的青藏高原植被物候时空特征分析[J]. 遥感技术与应用, 2018, 33(3):486-498.
[28] Zhou Y K, Liu J W. Spatio-temporal analysis of vegetation phenology with multiple methods over the Tibetan Plateau based on MODIS NDVI data[J]. Remote Sensing Technology and Application, 2018, 33(3):486-498.
[29] White M A, DeBEURS K M, Didan K, et al. Intercomparison,interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006[J]. Global Change Biology, 2009, 15(10):2335-2359.
[30] 吉珍霞, 裴婷婷, 陈英, 等. 黄土高原植被物候变化及其对季节性气候变化的响应[J]. 生态学报, 2021, 41(16):6600-6612.
[30] Ji Z X, Pei T T, Chen Y, et al. Vegetation phenology change and its response to seasonal climate changes on the Loess Plateau[J]. Acta Ecologica Sinica, 2021, 41(16):6600-6612.
[31] 覃嘉佳, 张继红, 张勇, 等. 季节性气候对不同草地植被物候变化的影响[J]. 遥感信息, 2022, 37(4):10-15.
[31] Qin J J, Zhang J H, Zhang Y, et al. Grassland vegetation phenology change and its response to seasonal climate[J]. Remote Sensing Information, 2022, 37(4):10-15.
[32] 石智宇, 王雅婷, 赵清, 等. 2001-2020年中国植被净初级生产力时空变化及其驱动机制分析[J]. 生态环境学报, 2022, 31(11):2111-2123.
doi: 10.16258/j.cnki.1674-5906.2022.11.002
[32] Shi Z Y, Wang Y T, Zhao Q, et al. The spatiotemporal changes of NPP and its driving mechanisms in China from 2001 to 2020[J]. Ecology and Environmental Sciences, 2022, 31(11):2111-2123.
[33] Guo M, Li J, He H S, et al. Detecting global vegetation changes using mann-kendal (MK) trend test for 1982-2015 time period[J]. Chinese Geographical Science, 2018, 28(6):907-919.
[34] 赖小红, 李名扬, 刘聪, 等. 植物物候对重庆主城区热岛效应的响应[J]. 生态学报, 2019, 39(19):7025-7034.
[34] Lai X H, Li M Y, Liu C, et al. The phenological responses of plants to the heat island effect in the main urban area of Chongqing[J]. Acta Ecologica Sinica, 2019, 39(19):7025-7034.
[35] 王彦超, 朱一丹, 徐丹丹. 基于Landsat 8影像的南京市热岛效应对植物物候的影响[J]. 南京林业大学学报(自然科学版), 2018, 61(6):99-105.
[35] Wang Y C, Zhu Y D, Xu D D. The impact of urban heat island of Landsat 8 OLI on plant phenology in Nanjing[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(6):99-105.
[1] YAO Lingyun, WANG Li, NIU Zheng, YIN Ziqi, FU Yuwen. Urban expansion in the Changsha-Zhuzhou-Xiangtan urban agglomeration and its urban heat island effect from 2000 to 2018[J]. Remote Sensing for Natural Resources, 2024, 36(1): 162-168.
[2] WANG Yuexiang, CHEN Wanting, ZHU Yuxin, CAI Anning. Urban heat island effects of Nanjing based on urban expansion directions and types derived from remote sensing data[J]. Remote Sensing for Natural Resources, 2023, 35(4): 130-138.
[3] ZHAO Anzhou, ZHANG Xiangrui, XIANG Kaizheng, LIU Xianfeng, ZHANG Jinghan. Analyzing the spatio-temporal evolution patterns of urbanization in the Loess Plateau based on night light data and statistical data[J]. Remote Sensing for Natural Resources, 2023, 35(3): 253-263.
[4] FENG Xiaogang, ZHAO Yi, LI Meng, ZHOU Zaihui, LI Fengxia, WANG Yuan, YANG Yongquan. Influence of urban rivers and their surrounding land on the surface thermal environment[J]. Remote Sensing for Natural Resources, 2023, 35(3): 264-273.
[5] PANG Xin, LIU Jun. Effects of climate changes on the NDVI of vegetation in Asia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 295-305.
[6] ZHANG Zhenqi, CAI Huiwen, ZHANG Pingping, WANG Zelin, LI Tingting. A GEE-based study on the temporal and spatial variations in the carbon source/sink function of vegetation in the Three-River Headwaters region[J]. Remote Sensing for Natural Resources, 2023, 35(1): 231-242.
[7] WANG Yating, ZHU Changming, ZHANG Tao, ZHANG Xin, SHI Zhiyu. Remote sensing monitoring and analysis of the vegetation phenological characteristics of the Qinling Mountains-Huanghuai Plain ecotone from 2002 to 2020[J]. Remote Sensing for Natural Resources, 2022, 34(4): 225-234.
[8] MENG Dan, LIU Lingtong, GONG Huili, LI Xiaojuan, JIANG Bowu. Coupling and coordination relationships between urbanization and ecological environment along the Beijing-Hangzhou Grand Canal[J]. Remote Sensing for Natural Resources, 2021, 33(4): 162-172.
[9] JIN Chengming, YANG Xingwang, JING Haitao. A RS-based study on changes in fractional vegetation cover in North Shaanxi and their driving factors[J]. Remote Sensing for Natural Resources, 2021, 33(4): 258-264.
[10] WEI Haohan, XU Renjie, YANG Qiang, ZHOU Quanping. Variation and effect analysis of the water level of the Taihu Lake based on multi-source satellite altimetry data[J]. Remote Sensing for Natural Resources, 2021, 33(3): 130-137.
[11] PAN Meng, CAO Yungang. Present status and perspectives of remote sensing survey of glacial lakes in High Asia[J]. Remote Sensing for Land & Resources, 2021, 33(1): 1-8.
[12] WANG Jiaxin, SA Chula, MAO Kebiao, MENG Fanhao, LUO Min, WANG Mulan. Temporal and spatial variation of soil moisture in the Mongolian Plateau and its response to climate change[J]. Remote Sensing for Land & Resources, 2021, 33(1): 231-239.
[13] WANG Xiaolong, YAN Haowen, ZHOU Liang, ZHANG Liming, DANG Xuewei. Using SVM classify Landsat image to analyze the spatial and temporal characteristics of main urban expansion analysis in Democratic People’s Republic of Korea[J]. Remote Sensing for Land & Resources, 2020, 32(4): 163-171.
[14] MUHADAISI Ariken, ZHANG Fei, LIU Kang, AYINUER Yushanjiang. Urban ecological environment evaluation based on Tiangong-2 and Landsat8 data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 209-218.
[15] LIU Hui, QI Zengxiang, HUANG Fuqiang. Spatio-temporal difference and correlation of urbanization with avian habitats in Dongting Lake area[J]. Remote Sensing for Land & Resources, 2020, 32(3): 191-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech