Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (2) : 265-273     DOI: 10.6046/zrzyyg.2023345
|
Classification of wetland plant communities in the Yellow River Delta based on GEE and multisource remote sensing data
ZHANG Nianqiu1,2(), MAO Dehua1,3(), FENG Kaidong1,2, ZHEN Jianing1, XIANG Hengxing1, REN Yongxing1
1. Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, CAS, Changchun 130102, China
Download: PDF(3986 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Accurately identifying plant communities in coastal wetlands is critical for strengthening the ecological quality monitoring and enhancing the ecosystem functions of coastal wetlands. With the Yellow River Delta as the study area, this study constructed a feature vector set including phenological, optical, red-edge, and radar features based on Sentinel-1/2 image data using the Google Earth Engine (GEE) platform. It classified the wetland plant communities in the Yellow River Delta in 2021 using the random forest algorithm. Moreover, it explored the effects of phenological features in classification. The results reveal an overall classification accuracy of 97.91 % and a Kappa coefficient of 0.97. In 2021, the distribution areas of Phragmites australis, Suaeda glauca, Spartina alterniflora, and Tamarix chinensis were 49.91 km2, 39.91 km2, 79.36 km2, and 20.86 km2, respectively. The phenological features of typical plant communities in the Yellow River Delta wetlands were effectively extracted based on the normalized difference vegetation index (NDVI) time-series fitting curves. The highly distinguishable features included the maximum value date, base value, growth amplitude, beginning-of-season growth rate, and end-of-season decline rate. Compared to other feature variables, phenological features contributed more significantly to the overall classification accuracy, suggesting their prominent role in classification. The results of this study provide a methodological reference and scientific basis for the plant community monitoring and ecological conservation of coastal wetlands in the Yellow River Delta.

Keywords GEE      Sentinel-1/2 images      phenological features      wetland plant community      Yellow River Delta     
ZTFLH:  TP79  
Issue Date: 09 May 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Nianqiu ZHANG
Dehua MAO
Kaidong FENG
Jianing ZHEN
Hengxing XIANG
Yongxing REN
Cite this article:   
Nianqiu ZHANG,Dehua MAO,Kaidong FENG, et al. Classification of wetland plant communities in the Yellow River Delta based on GEE and multisource remote sensing data[J]. Remote Sensing for Natural Resources, 2025, 37(2): 265-273.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023345     OR     https://www.gtzyyg.com/EN/Y2025/V37/I2/265
Fig.1  Location of study area
数据
名称
传感器
类型
影像获取时间 空间分
辨率/m
重访
周期/d
Sentinel-1 SAR-C 2021-05-01—2021-10-31 10 6
Sentinel-2 MSI 2021-01-01—2021-12-31 10~60 2~5
Tab.1  Information of satellite remote sensing data
类型 芦苇 碱蓬 互花米草 柽柳 非植被 总计
训练样本 111 39 131 37 42 360
验证样本 36 23 53 19 13 144
合计 147 62 184 56 55 504
Tab.2  Number of samples for each plant species and non-vegetation (个)
Fig.2  Illustration of the NDVI fitted curve based on the two-term Fourier function
特征变量 特征简称 特征说明
光谱波段 B B1,B2,B3,B4,B8,B9,B11,B12
植被指数 NDVI (B8-B4)/(B8+B4)
EVI 2.5[(B8-B4)/(B8+6B4-7.5B2+1)]
RVI B8/B4
水体指数 NDWI (B3-B8)/(B3+B8)
mNDWI (B3-B11)/(B3+B11)
LSWI (B8-B11)/(B8+B11)
红边特征 Bre B5,B6,B7,B8A
NDVIre1 (B8A-B5)/(B8A+B5)
NDVIre2 (B8A-B6)/(B8A+B6)
NDre1 (B6-B5)/(B6+B5)
NDre2 (B7-B5)/(B7+B5)
CIre B7/B5-1
雷达特征 VV 垂直发射和垂直接收的极化波
VH 垂直发射和水平接收的极化波
SAR_sum VV+VH
SAR_diff VV-VH
SAR_NDVI (VV-VH)/(VV+VH)
物候特征 SOS NDVI从左最小值向右增加到季节振幅的20%对应的日期
EOS NDVI从右最小值向左增加到季节振幅的20%对应的日期
LOS 从生长季开始到生长季结束持续的时间
MOS 拟合函数在季节中达到最大值对应的日期
BV 拟合函数的最小值
SA 拟合函数最大值与基准值之差
IRS (最大值-SOS对应的NDVI)/(MOS-SOS)
DRS (最大值-EOS对应的NDVI)/(EOS-MOS)
Tab.3  Description of the feature set
方案 特征组合
方案1 传统光学特征
方案2 传统光学特征+红边特征
方案3 传统光学特征+红边特征+雷达特征
方案4 传统光学特征+红边特征+雷达特征+物候特征
Tab.4  Information of classification model
Fig.3  Comparison of growth season NDVI and time of different plant species
Fig.4  Comparison of phenological features index of different plant species
Fig.5  Relationship between classification accuracy and number of feature combinations
比例 物候特征 传统光
学特征
红边特征 雷达特征
特征变量数量占比 38.5 38.5 15.4 7.7
特征变量重要性总
和占比
35.9 40.3 14.7 9.0
Tab.5  Comparison of importance of different features (%)
Fig.6  Classification and area of wetland plant communities in the Yellow River Delta in 2021
类型 芦苇 碱蓬 互花米草 柽柳 非植被 UA/%
芦苇 36 0 0 0 0 100.00
碱蓬 0 23 0 0 0 100.00
互花米草 0 0 52 1 0 98.11
柽柳 0 0 0 19 0 100.00
非植被 0 2 0 0 11 84.62
PA/% 100.00 92.00 100.00 95.00 100.00
OA: 97.91% Kappa系数: 0.972 2
Tab.6  The confusion matrix of classification of YRD wetland plant species
Fig.7  Accuracy comparisons of classification results of each scheme
[1] Scott D B, Frail J, Mudie P J. Coastal wetlands of the world[M]. Cambridge: Cambridge University Press, 2014:17.
[2] Song S, Wu Z F, Wang Y F, et al. Mapping the rapid decline of the intertidal wetlands of China over the past half century based on remote sensing[J]. Frontiers in Earth Science, 2020:8.
[3] Murray N J, Clemens R S, Phinn S R, et al. Tracking the rapid loss of tidal wetlands in the Yellow Sea[J]. Frontiers in Ecology and the Environment, 2014, 12(5):267-272.
[4] Qiu Z Q, Mao D H, Feng K D, et al. High-resolution mapping changes in the invasion of Spartina alterniflora in the Yellow River Delta[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15:6445-6455.
[5] 马喜君, 陆兆华, 林涛. 盐城海滨湿地生态风险评价[J]. 海洋环境科学, 2010, 29(4):599-602.
[5] Ma X J, Lu Z H, Lin T. Ecological risk assessment of Yancheng Coastal Wetland[J]. Marine Environmental Science, 2010, 29(4):599-602.
[6] 许婕, 刘加珍, 张天举, 等. 黄河口湿地柽柳灌丛土壤盐渍化特征[J]. 生态学报, 2022, 42(17):7118-7127.
[6] Xu J, Liu J Z, Zhang T J, et al. Soil salinization characteristics under the crown of Tamarix chinensis in the wetland of the Yellow River Estuary[J]. Acta Ecologica Sinica, 2022, 42(17):7118-7127.
[7] 刘瑞清, 李加林, 孙超, 等. 基于Sentinel-2遥感时间序列植被物候特征的盐城滨海湿地植被分类[J]. 地理学报, 2021, 76(7):1680-1692.
doi: 10.11821/dlxb202107008
[7] Liu R Q, Li J L, Sun C, et al. Classification of Yancheng coastal wetland vegetation based on vegetation phenological characteristics derived from Sentinel-2 time-series[J]. Acta Geographica Sinica, 2021, 76(7):1680-1692.
doi: 10.11821/dlxb202107008
[8] Chen B Q, Xiao X M, Li X P, et al. A mangrove forest map of China in 2015:Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 131:104-120.
[9] Zhao Y X, Mao D H, Zhang D Y, et al. Mapping Phragmites australis aboveground biomass in the momoge wetland ramsar site based on sentinel-1/2 images[J]. Remote Sensing, 2022, 14:694.
[10] 许青云, 李莹, 谭靖, 等. 基于高分六号卫星数据的红树林提取方法[J]. 自然资源遥感, 2023, 35(1):41-48.doi:10.6046/zrzyyg.2022048.
[10] Xu Q Y, Li Y, Tan J, et al. Information extraction method of mangrove forests based on GF-6 data[J]. Remote Sensing for Natural Resources, 2023, 35(1):41-48.doi:10.6046/zrzyyg.2022048.
[11] Zhang C, Gong Z N, Qiu H C, et al. Mapping typical salt-marsh species in the Yellow River Delta wetland supported by temporal-spatial-spectral multidimensional features[J]. Science of the Total Environment, 2021, 783:147061.
[12] Zhu W Q, Ren G B, Wang J P, et al. Monitoring the invasive plant Spartina alterniflora in Jiangsu coastal wetland using MRCNN and long-time series landsat data[J]. Remote Sensing, 2022, 14(11):2630.
[13] 宁晓刚, 常文涛, 王浩, 等. 联合GEE与多源遥感数据的黑龙江流域沼泽湿地信息提取[J]. 遥感学报, 2022, 26(2):386-396.
[13] Ning X G, Chang W T, Wang H, et al. Extraction of marsh wetland in Heilongjiang basin based on GEE and multi-source remote sensing data[J]. National Remote Sensing Bulletin, 2022, 26(2):386-396.
[14] Li H Y, Mao D H, Wang Z M, et al. Invasion of spartina alterniflora in the coastal zone of mainland China:Control achievements from 2015 to 2020 towards the Sustainable Development Goals[J]. Journal of Environmental Management, 2022, 323:116242.
[15] 张磊, 宫兆宁, 王启为, 等. Sentinel-2影像多特征优选的黄河三角洲湿地信息提取[J]. 遥感学报, 2019, 23(2):313-326.
[15] Zhang L, Gong Z N, Wang Q W, et al. Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images[J]. National Remote Sensing Bulletin, 2019, 23(2):313-326.
[16] Gong Z N, Zhang C, Zhang L, et al. Assessing spatiotemporal characteristics of native and invasive species with multi-temporal remote sensing images in the Yellow River Delta,China[J]. Land Degradation & Development, 2021, 32(3):1338-1352.
[17] Han X, Wang Y, Ke Y, et al. Phenological heterogeneities of invasive Spartina alterniflora salt marshes revealed by high-spatial-resolution satellite imagery[J]. Ecological Indicators, 2022, 144:109492.
[18] Friedl M A, Sulla-Menashe D, Tan B, et al. MODIS Collection 5 global land cover:Algorithm refinements and characterization of new datasets[J]. Remote Sensing of Environment, 2010, 114(1):168-182.
[19] Wang T, Zhang H S, Lin H, et al. Textural-spectral feature-based species classification of mangroves in Mai Po Nature Reserve from Worldview-3 imagery[J]. Remote Sensing, 2016, 8(1):24.
[20] 陈健, 李虎, 刘玉锋, 等. 基于Sentinel-2数据多特征优选的农作物遥感识别研究[J]. 自然资源遥感, 2023, 35(4):292-300.doi:10.6046/zrzyyg.2022272.
[20] Chen J, Li H, Liu Y F, et al. Crops identification based on Sentinel-2 data with multi-feature optimization[J]. Remote Sensing for Natural Resources, 2023, 35(4):292-300.doi:10.6046/zrzyyg.2022272.
[21] Li A, Song K, Chen S, et al. Mapping African wetlands for 2020 using multiple spectral,geo-ecological features and Google Earth Engine[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 193:252-268.
[22] Tian J, Wang L, Yin D, et al. Development of spectral-phenological features for deep learning to understand Spartina alterniflora invasion[J]. Remote Sensing of Environment, 2020, 242:111745.
[23] Zhang X, Xiao X, Wang X, et al. Quantifying expansion and removal of Spartina alterniflora on Chongming Island,China,using time series Landsat images during 1995-2018[J]. Remote Sensing of Environment, 2020, 247:111916.
[24] Sun C, Li J, Liu Y, et al. Plant species classification in salt marshes using phenological parameters derived from Sentinel-2 pixel-differential time-series[J]. Remote Sensing of Environment, 2021, 256:112320.
[25] 李恒凯, 王利娟, 肖松松. 基于多源数据的南方丘陵山地土地利用随机森林分类[J]. 农业工程学报, 2021, 37(7):244-251.
[25] Li H K, Wang L J, Xiao S S. Random forest classification of land use in hilly and mountaineous areas of Southern China using multi-source remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(7):244-251.
[26] Ai J, Gao W, Gao Z, et al. Phenology-based Spartina alterniflora mapping in coastal wetland of the Yangtze Estuary using time series of GaoFen satellite No.1 wide field of view imagery[J]. Journal of Applied Remote Sensing, 2017, 11:026020.
[27] Feng K, Mao D, Qiu Z, et al. Can time-series Sentinel images be used to properly identify wetland plant communities?[J]. GIScience & Remote Sensing, 2022, 59(1):2202-2216.
[28] 薛朝辉, 钱思羽. 融合Landsat 8与Sentinel-2数据的红树林物候信息提取与分类[J]. 遥感学报, 2022, 26(6):1121-1142.
[28] Xue Z H, Qian S Y. Fusion of Landsat 8 and Sentinel-2 data for mangrove phenology information extraction and classification[J]. National Remote Sensing Bulletin, 2022, 26(6):1121-1142.
[1] CHEN Yuanyuan, YAN Shuoting, YAN Jin, ZHENG Siqi, WANG Hao, ZHU Jie. Forest disturbance monitoring in Lishui City, China based on Landsat time series images and the LandTrendr algorithm[J]. Remote Sensing for Natural Resources, 2025, 37(1): 179-187.
[2] FENG Qian, ZHANG Jiahua, DENG Fan, WU Zhenjiang, ZHAO Enling, ZHENG Peixin, HAN Yang. A mapping methodology for wetland categories of the Yellow River Delta based on optimal feature selection and spatio-temporal fusion algorithm[J]. Remote Sensing for Natural Resources, 2024, 36(2): 39-49.
[3] SONG Yingxu, ZOU Yujia, YE Runqing, HE Zhixia, WANG Ningtao. Dynamic analysis of landslide hazards in the Three Gorges Reservoir area based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2024, 36(1): 154-161.
[4] WANG Yumiao, LI Sheng, DONG Chunyu, YANG Gang. Remote sensing information extraction for mangrove forests based on multi-feature parameters: A case study of Guangdong Province[J]. Remote Sensing for Natural Resources, 2024, 36(1): 95-102.
[5] PARIHA Helili, ZAN Mei. Spatio-temporal changes and influencing factors of ecological environments in oasis cities of arid regions[J]. Remote Sensing for Natural Resources, 2023, 35(3): 201-211.
[6] YU Sen, JIA Mingming, CHEN Gao, LU Yingying, LI Yi, ZHANG Bochun, LU Chunyan, LI Huiying. A study of the disturbance to mangrove forests in Dongzhaigang, Hainan based on LandTrendr[J]. Remote Sensing for Natural Resources, 2023, 35(2): 42-49.
[7] SHI Min, LI Huiying, JIA Mingming. Spatio-temporal variations in mangrove forests in the Shankou Mangrove Nature Reserve based on the GEE cloud platform and Landsat data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 61-69.
[8] LI Yefan, WANG Lin, ZHANG Dongzhu. Information extraction of coastal aquaculture ponds based on spectral features and spatial convolution[J]. Remote Sensing for Natural Resources, 2022, 34(4): 42-52.
[9] LI Yi, CHENG Lina, LU Yingying, ZHANG Bochun, YU Sen, JIA Mingming. A study on the changes in coastal tidal flats in the Laizhou Bay based on MSIC and OTSU[J]. Remote Sensing for Natural Resources, 2022, 34(4): 68-75.
[10] Jiaping WU, Yang ZHANG, Jie ZHANG, Shenglong FAN, Chao YANG, Xiaofang ZHANG. Comparison and analysis of water indexes in muddy coasts based on MODIS data: A case study of the Yellow River Delta coast[J]. Remote Sensing for Land & Resources, 2019, 31(3): 242-249.
[11] LUO Hao, WANG Hong, SHI Changhui. Retrieving groundwater in Yellow River Delta area using remote sensing[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(3): 145-152.
[12] GUAN Yuan-xiu, LIU Gao-huan . REMOTE SENSING DETECTION OF DYNAMIC VARIATION OF THE SALINE LAND IN THE YELLOW RIVER DELTA[J]. REMOTE SENSING FOR LAND & RESOURCES, 2003, 15(2): 19-22,33.
[13] LIU Qing-sheng, LIU Gao-huan, YE Qing-hua . A PRELIMINARY DISCUSSION ON STATISTICAL DISTRIBUTION CHARACTISTICS OF THE NEOTERIC AND MODERN YELLOW RIVER DELTA[J]. REMOTE SENSING FOR LAND & RESOURCES, 2001, 13(4): 50-52,63.
[14] HUO Dong-min, ZHANG Jing-xiong, SUN Jia-bing . USING THE CBERS-1 SATELLITE DATA TO STUDY THE THEMATIC INFORMATION EXTRACTION OF SALINE DRYLAND[J]. REMOTE SENSING FOR LAND & RESOURCES, 2001, 13(2): 48-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech