|
|
|
Abstract Forest above-ground biomass (AGB) is recognized as an important indicator of forest productivity. Rapid and accurate estimation of forest AGB is crucial for sustainable forest management and carbon cycle research. Based on spaceborne light detection and ranging (LiDAR) data from the global ecosystem dynamic investigation (GEDI) and Sentinel-2 optical data,this study extracted GEDI L2B,Sentinel-2 remote sensing features,and topographic factors (elevation,aspect,and slope) in the study area. Among them,variables were determined through Pearson correlation analysis. Then,this study constructed the partial least squares regression (PLSR),gradient boosting regression tree (GBRT),and random forest (RF) models for forest AGB inversion. Consequently,this study estimated these models’ potential for forest AGB estimation and analyzed the spatial distribution differences of forest AGB. The results indicate that the estimation using multi-source data consistently outperformed that using single-source data. Among them,the RF model based on GEDI and Sentinel-2 data exhibited the best performance (R2=0.76,root mean square error (RMSE)=23.02 t/hm2),followed by the GBRT model,while the PLSR model performed the worst (R2=0.26). In terms of spatial distribution,within the elevation range of 1 200~1 800 m,forest AGB density increased with elevation. Slope variation had little effect on forest AGB density,but a pronounced decrease in AGB density was observed on steep slopes. Aspect analysis showed that semi-shaded and sunny slopes exhibited high forest AGB density,while shaded and semi-sunny slopes presented similar values. Slope-aspect interaction analysis revealed that sunny and semi-sunny slopes displayed the highest total forest AGB on gentle and moderate slopes,respectively. In contrast,forest AGB significantly decreased across all orientations on flat and steep slopes,with a more significant decline observed on shaded and semi-shaded slopes. These findings provide a scientific basis for formulating forest protection and cultivation policies at the provincial level.
|
| Keywords
Sentinel-2
global ecosystem dynamics investigation (GEDI)
forest above-ground biomass (AGB)
random forest (RF) model
|
|
|
|
Issue Date: 28 October 2025
|
|
|
| [1] |
Wang M J, Sun R, Xiao Z Q. Estimation of forest canopy height and aboveground biomass from spaceborne LiDAR and Landsat imageries in Maryland[J]. Remote Sensing, 2018, 10(2):344.
|
| [2] |
薛春泉, 徐期瑚, 林丽平, 等. 基于异速生长和理论生长方程的广东省木荷生物量动态预测[J]. 林业科学, 2019, 55(7):86-94.
|
| [2] |
Xue C Q, Xu Q H, Lin L P, et al. Biomass dynamic predicting for Schima superba in Guangdong based on allometric and theoretical growth equation[J]. Scientia Silvae Sinicae, 2019, 55(7):86-94.
|
| [3] |
闻馨, 刘凯, 曹晶晶, 等. 基于森林冠层高度和异速生长方程的中国红树林地上生物量估算[J]. 热带地理, 2023, 43(1):1-11.
doi: 10.13284/j.cnki.rddl.003616
|
| [3] |
Wen X, Liu K, Cao J J, et al. Estimation of mangrove aboveground biomass in China using forest canopy height through an allometric equation[J]. Tropical Geography, 2023, 43(1):1-11.
doi: 10.13284/j.cnki.rddl.003616
|
| [4] |
Sun G Q, Ranson K J, Guo Z, et al. Forest biomass mapping from Lidar and Radar synergies[J]. Remote Sensing of Environment, 2011, 115(11):2906-2916.
|
| [5] |
Foody G M, Boyd D S, Cutler M E J. Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions[J]. Remote Sensing of Environment, 2003, 85(4):463-474.
|
| [6] |
李旺, 牛铮, 王成, 等. 机载LiDAR数据估算样地和单木尺度森林地上生物量[J]. 遥感学报, 2015, 19(4):669-679.
|
| [6] |
Li W, Niu Z, Wang C, et al. Forest above-ground biomass estimation at plot and tree levels using airborne LiDAR data[J]. Journal of Remote Sensing, 2015, 19(4):669-679.
|
| [7] |
Luo S Z, Wang C, Xi X H, et al. Fusion of airborne LiDAR data and hyperspectral imagery for aboveground and belowground forest biomass estimation[J]. Ecological Indicators, 2017, 73:378-387.
|
| [8] |
Dubayah R, Blair J B, Goetz S, et al. The global ecosystem dynami-cs investigation:High-resolution laser ranging of the earth’s forests and topography[J]. Science of Remote Sensing, 2020, 1:100002.
|
| [9] |
田国帅, 周小成, 郝优壮, 等. 结合修正后的全球生态系统动态调查冠层高度的森林地上生物量模型优化——以福建省为例[J]. 生态学报, 2024, 44(16):7264-7277.
|
| [9] |
Tian G S, Zhou X C, Hao Y Z, et al. Optimization model of forest aboveground biomass based on MGEDI canopy height:A case study in Fujian,China[J]. Acta Ecologica Sinica, 2024, 44(16):7264-7277.
|
| [10] |
Guo Q Y, Du S H, Jiang J B, et al. Combining GEDI and sentinel data to estimate forest canopy mean height and aboveground biomass[J]. Ecological Informatics, 2023, 78:102348.
|
| [11] |
Khati U, Lavalle M, Singh G. The role of time-series L-band SAR and GEDI in mapping sub-tropical above-ground biomass[J]. Frontiers in Earth Science, 2021, 9:752254.
|
| [12] |
Silva C A, Duncanson L, Hancock S, et al. Fusing simulated GEDI,ICESat-2 and NISAR data for regional aboveground biomass mapping[J]. Remote Sensing of Environment, 2021, 253:112234.
|
| [13] |
Xu L, Lai H Y, Yu J G, et al. Carbon storage estimation of Quercus aquifolioides based on GEDI spaceborne LiDAR data and Landsat9 images in Shangri-La[J]. Sustainability, 2023, 15(15):11525.
|
| [14] |
胥辉, 张会儒. 林木生物量模型研究[M]. 昆明: 云南科技出版社, 2002.
|
| [14] |
Xu H, Zhang H R. Research on forest biomass models[M]. Kunming: Yunnan Science and Technology Press, 2002.
|
| [15] |
韩明辉, 邢艳秋, 李国元, 等. GEDI不同算法组数据反演森林最大冠层高度和生物量精度比较[J]. 中南林业科技大学学报, 2022, 42(10):72-82.
|
| [15] |
Han M H, Xing Y Q, Li G Y, et al. Comparison of the accuracy of the maximum canopy height and biomass inversion of the data of different GEDI algorithm groups[J]. Journal of Central South University of Forestry & Technology, 2022, 42(10):72-82.
|
| [16] |
Liu Y H, Zhong Y F, Ma A L, et al. Cross-resolution national-scale land-cover mapping based on noisy label learning:A case study of China[J]. International Journal of Applied Earth Observation and Geoinformation, 2023, 118:103265.
|
| [17] |
刘霜. 基于Sentinel-1/2的重庆市南川区森林生物量估算研究[D]. 成都: 成都理工大学, 2020.
|
| [17] |
Liu S. Forest biomass estimation in Nanchuan district of Chongqing City using a combination of Sentinel-1 and Sentinel-2 data[D]. Chengdu: Chengdu University of Technology, 2020.
|
| [18] |
Kauth R J, Thomas G S. The tasselled cap:A graphic description of the spectraltemporal development of agricultural crops as seen by Landsat[C]. Proceedings of the Symposium on Machine Processing of Remotely Sensed Data. West Lafayette: Purdue University, 1976,41-51.
|
| [19] |
姜丰, 朱家玲, 胡开永, 等. Pearson相关系数评价ORC系统蒸发器特性的应用研究[J]. 太阳能学报, 2019, 40(10):2732-2738.
|
| [19] |
Jiang F, Zhu J L, Hu K Y, et al. Applied research to assess envaporator performances in orc system by Pearson correlation coefficient[J]. Acta Energiae Solaris Sinica, 2019, 40(10):2732-2738.
|
| [20] |
贺鹏, 张会儒, 雷相东, 等. 基于地统计学的森林地上生物量估计[J]. 林业科学, 2013, 49(5):101-109.
|
| [20] |
He P, Zhang H R, Lei X D, et al. Estimation of forest above-ground biomass based on geostatistics[J]. Scientia Silvae Sinicae, 2013, 49(5):101-109.
|
| [21] |
Amarsaikhan E, Erdenebaatar N, Amarsaikhan D, et al. Estimation and mapping of pasture biomass in Mongolia using machine learning methods[J]. Geocarto International, 2023, 38(1):2195824.
|
| [22] |
Breiman L. Statistical modeling:The two cultures (with comments and a rejoinder by the author)[J]. Statistical Science, 2001, 16(3):199-231.
|
| [23] |
罗绍龙, 舒清态, 余金格, 等. 基于序贯高斯条件模拟的GEDI数据联合Landsat8反演森林地上生物量[J]. 林业科学研究, 2024, 37(3):49-60.
|
| [23] |
Luo S L, Shu Q T, Yu J G, et al. Combined GEDI data and Landsat8 for inversion of forest aboveground biomass based on sequential Gaussian condition simulation[J]. Forest Research, 2024, 37(3):49-60.
|
| [24] |
Lu D S, Chen Q, Wang G X, et al. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems[J]. International Journal of Digital Earth, 2016, 9(1):63-105.
|
| [25] |
Li Y C, Li C, Li M Y, et al. Influence of variable selection and forest type on forest aboveground biomass estimation using machine learning algorithms[J]. Forests, 2019, 10(12):1073.
|
| [26] |
Zhang Y R, He B B, Chen R, et al. The potential of optical and SAR time-series data for the improvement of aboveground biomass carbon estimation in southwestern China’s evergreen coniferous forests[J]. GIScience & Remote Sensing, 2024, 61(1):2345438.
|
| [27] |
Rana P, Popescu S, Tolvanen A, et al. Estimation of tropical forest aboveground biomass in Nepal using multiple remotely sensed data and deep learning[J]. International Journal of Remote Sensing, 2023, 44(17):5147-5171.
|
| [28] |
McEwan R W, Lin Y C, Sun I F, et al. Topographic and biotic regu-lation of aboveground carbon storage in subtropical broad-leaved forests of Taiwan[J]. Forest Ecology and Management, 2011, 262(9):1817-1825.
|
| [29] |
刘兴良, 史作民, 杨冬生, 等. 山地植物群落生物多样性与生物生产力海拔梯度变化研究进展[J]. 世界林业研究, 2005, 18(4):27-34.
|
| [29] |
Liu X L, Shi Z M, Yang D S, et al. Advances in study on changes of biodiversity and productivity along elevational gradient in mountainous plant community[J]. World Forestry Research, 2005, 18(4):27-34.
|
| [30] |
Ferry B, Morneau F, Bontemps J D, et al. Higher treefall rates on slopes and waterlogged soils result in lower stand biomass and productivity in a tropical rain forest[J]. Journal of Ecology, 2010, 98(1):106-116.
|
| [31] |
窦佳慧, 梁宇, 怀保娟, 等. 不同地形条件下青藏高原森林生产力和碳收支动态[J]. 生态学杂志, 2024, 43(6):1521-1530.
|
| [31] |
Dou J H, Liang Y, Huai B J, et al. Productivity and carbon budget dynamics of forests under different topographic conditions on Tibe-tan Plateau[J]. Chinese Journal of Ecology, 2024, 43(6):1521-1530.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|