Please wait a minute...
 
REMOTE SENSING FOR LAND & RESOURCES    2013, Vol. 25 Issue (1) : 137-142     DOI: 10.6046/gtzyyg.2013.01.24
Technology Application |
Evaluation of Chinese-made satellite images for extraction of land use information in macroscopic monitoring
YAN Min1,2,3, ZHANG Li2, YAN Qin3, YAN Dongmei1, YOU Shucheng4
1. Geometric College, Shandong University of Science and Technology, Qingdao 266590, China;
2. Center for Earth Observation and Digital Earth, Chinese Academy of Science, Beijing 100094, China;
3. Chinese Academy of Surveying & Mapping, Beijing 100830, China;
4. China Land Surveying & Planning Institute, Beijing 100037, China
Download: PDF(3564 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

This paper evaluated 3 Chinese-made satellite images for extraction of land use information in macroscopic monitoring in 6 typical counties with varied topography characteristics. The authors compared many classification methods and analyzed the impacts of training samples, classification methods, and feature data on classification accuracies. It is found that the simple MLC method can acquire better accuracy, whereas the object-oriented method can improve the accuracy for HJ-1 and BJ-1. For CBERS-02B, the MLC classification accuracy tended to be stable and the Kappa coefficient was above 0.8 when the training samples reached 50. For HJ-1 and BJ-1, the classification accuracy tended to be stable when the training samples reached 60 and the Kappa coefficient was above 0.7. The feature data (i.e. NDVI and DEM) can improve the classification accuracy for CBERS-02B, and DEM can improve the accuracy for HJ-1 and BJ-1. The authors suggest integrating multiple Chinese-made satellite images for acquiring valid images all over the country in macroscopic monitoring. The findings provide scientific basis in accuracy and methods for the macroscopic monitoring.

Keywords InSAR      phase unwrapping      Kalman filter      SRTM DEM     
:  TP79  
Issue Date: 21 February 2013
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HAO Huadong
LIU Guolin
CHEN Xianlei
CAO Zhentan
Cite this article:   
HAO Huadong,LIU Guolin,CHEN Xianlei, et al. Evaluation of Chinese-made satellite images for extraction of land use information in macroscopic monitoring[J]. REMOTE SENSING FOR LAND & RESOURCES, 2013, 25(1): 137-142.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2013.01.24     OR     https://www.gtzyyg.com/EN/Y2013/V25/I1/137
[1] 尤淑撑,刘顺喜,周连芳,等.基于CBERS-02B星数据的土地利用/覆被类型监测应用研究[J].国土资源遥感,2009,21(1):83-85. You S C,Liu S X,Zhou L F,et al.Application method for land use macro monitoring based on CBERS-02B CCD data[J].Remote Sensing for Land and Resources,2009,21(1):83-85.
[2] 申克建.CBERS CCD数据土地利用/覆被分类研究[D].北京:中国地质大学,2009. Shen K J.Research of land-use and land cover classification methods based on CBERS CCD satellite data[D].Beijing:China University of Geosciences,2009.
[3] 陈江,郭增长.中巴资源卫星02B星土地覆盖分类[J].太原科技,2008(10):52-54. Chen J,Guo Z C.Research of land-use and land cover classification[J].Taiyuan Science and Technology,2008(10):52-54.
[4] 王茜,张增祥,牟风云,等."北京一号"小卫星影像质量及土地利用分类精度研究[J].中国矿业大学学报,2007,36(3):386-389. Wang Q,Zhang Z X,Mou F Y,et al.Research on"Beijing 1"micro-satellite image quality and land use classification precision[J].Journal of China University of Mining and Technology,2007,36(3):386-389.
[5] 朱秀芳,潘耀忠,王双,等.训练样本对TM尺度小麦种植面积测量精度影响研究(Ⅱ)——样本质量对小麦测量精度的影响分析[J].测绘科学,2009,161(5):132-135. Zhu X F,Pan Y Z,Wang S,et al.The effects of training samples on the wheat planting area surveying accuracy in TM scale(II):The accuracy response of different classifiers to samples quality[J].Science of Surveying and Mapping,2009,161(5):132-135.
[6] 薄树奎,丁琳.训练样本数目选择对面向对象影像分类方法精度的影响[J].中国图象图形学报,2010,15(7):1106-1111. Bo S K,Ding L.The effect of the size of training sample on classification accuracy in object-oriented image analysis[J].Journal of Image and Graphics,2010,15(7):1106-1111.
[7] 郭健,张继贤,张永红,等.多时相MODIS影像土地覆盖分类比较研究[J].测绘学报,2009,38(1):88-92. Guo J,Zhang J X,Zhang Y H,et al.Study of the comparison of land cover classification for multitemporal MODIS images[J].Acta Geodaeticaet Cartographica Sinica,2009,38(1):88-92.
[8] Nemmour H,Chibani Y.Multiple support vector machins for land cover change detection:An application for mapping urban extensions[J].ISPRS Journal of Photogrammentry and Remote Sensing,2006,61(2):125-133.
[9] 骆剑承,周成虎,梁怡,等.支撑向量机及其遥感影像空间特征提取和分类的应用研究[J].遥感学报,2002,6(1):50-55. Luo J C,Zhou C H,Liang Y,et al.Support vector machine for spatial feature extraction and classification of remotely sensed imagery[J].Journal of Remote Sensing,2002,6(1):50-55.
[10] Sun Z P,Shen W M,Wen B.Object-oriented land cover classification using HJ-1 remote sensing imagery[J].Science China:Earth Sciences,2010,53(S1):34-44.
[11] 施拥军.森林遥感分类技术研究——以浙西北山区为例[D].杭州:浙江大学,2003. Shi Y J.Research on Technologies of forest classification by remote sensing-a case of northwest mountainous area in Zhejiang[D],Hangzhou:Zhejiang University,2003.
[1] YANG Wang, HE Yi, ZHANG Lifeng, WANG Wenhui, CHEN Youdong, CHEN Yi. InSAR monitoring of 3D surface deformation in Jinchuan mining area, Gansu Province[J]. Remote Sensing for Natural Resources, 2022, 34(1): 177-188.
[2] LI Mengmeng, FAN Xueting, CHEN Chao, LI Qiannan, YANG Jin. Monitoring and interpretation of land subsidence in mining areas in Xuzhou City during 2016—2018[J]. Remote Sensing for Natural Resources, 2021, 33(4): 43-54.
[3] SHI Min, GONG Huili, CHEN Beibei, GAO Mingliang, ZHANG Shunkang. Monitoring of land subsidence in Beijing-Tianjin-Hebei plain during 2016—2018 based on InSAR and Sentinel-1A data[J]. Remote Sensing for Natural Resources, 2021, 33(4): 55-63.
[4] SHA Yonglian, WANG Xiaowen, LIU Guoxiang, ZHANG Rui, ZHANG Bo. SBAS-InSAR-based monitoring and inversion of surface subsidence of the Shadunzi Coal Mine in Hami City, Xinjiang[J]. Remote Sensing for Natural Resources, 2021, 33(3): 194-201.
[5] ZHANG Teng, XIE Shuai, HUANG Bo, FAN Jinghui, CHEN Jianping, TONG Liqiang. Detection of active landslides in central Maoxian County using Sentinel-1 and ALOS-2 data[J]. Remote Sensing for Land & Resources, 2021, 33(2): 213-219.
[6] HE Haiying, CHEN Caifen, CHEN Fulong, TANG Panpan. Deformation monitoring along the landscape corridor of Zhangjiakou Ming Great Wall using Sentinel-1 SBAS-InSAR approach[J]. Remote Sensing for Land & Resources, 2021, 33(1): 205-213.
[7] YU Hairuo, GONG Huili, CHEN Beibei, ZHOU Chaofan. Emerging risks and the prospect of urban underground space security based on InSAR-GRACE satellite under the new hydrological background[J]. Remote Sensing for Land & Resources, 2020, 32(4): 16-22.
[8] ZHANG Ling, LIU Bin, GE Daqing, GUO Xiaofang. Detecting tiny differential deformation of Tangshan urban active fault using multi-source SAR data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 114-120.
[9] Mao ZHU, Tiyan SHEN, Song HUANG, Shujian BAI, Chunqin GE, Qiong HU. Research on applications of InSAR technology to the deformation monitoring of buildings along the subway[J]. Remote Sensing for Land & Resources, 2019, 31(2): 196-203.
[10] Zhenlin WANG, Mingsheng LIAO, Lu ZHANG, Heng LUO, Jie DONG. Detecting and characterizing deformations of the left bank slope near the Jinping hydropower station with time series Sentinel-1 data[J]. Remote Sensing for Land & Resources, 2019, 31(2): 204-209.
[11] Zechao BAI, Baocun WANG, Guowang JIN, Qing XU, Hongmin ZHANG, Hui LIU. Applicability analysis of ground deformation monitoring in mining area by Sentinel - 1A data[J]. Remote Sensing for Land & Resources, 2019, 31(2): 210-217.
[12] Dong WANG, Fengbing LAI, Mengyu CHEN, Shujiang CHEN, Tiecheng HUANG, Xiang JIA. Research on coseismic deformation in Ukraine River Valley of Tianshan Mountains based on InSAR technology[J]. Remote Sensing for Land & Resources, 2019, 31(1): 187-194.
[13] Nianqin WANG, Dejing QIAO, Xiyou FU. An analysis of the influence of filtering parameter on the performance of Goldstein InSAR interfergram filter[J]. Remote Sensing for Land & Resources, 2019, 31(1): 117-124.
[14] Juan XUE, Linfeng YU, Qinan LIN, Guang LIU, Huaguo HUANG. Using Sentinel-1 multi-temporal InSAR data to monitor the damage degree of shoot beetle in Yunnan pine forest[J]. Remote Sensing for Land & Resources, 2018, 30(4): 108-114.
[15] LIU Yilin, ZHANG Qin, HUANG Haijun, YANG Chengsheng, ZHAO Chaoying. Monitoring and analyzing large scale land subsidence over the mining area using small baseline subset InSAR[J]. REMOTE SENSING FOR LAND & RESOURCES, 2017, 29(2): 144-151.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech