Please wait a minute...
REMOTE SENSING FOR LAND & RESOURCES    2015, Vol. 27 Issue (4) : 189-194     DOI: 10.6046/gtzyyg.2015.04.29
Construction of the library of targets microwave properties
BIAN Xiaolin1, SHAO Yun1, ZHANG Fengli1, FU Xiyou1,2
1. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
Download: PDF(4671 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Synthetic Aperture Radar (SAR) remote sensing is playing an important role in remote sensing applications for its distinctive properties. However, the depth and breadth of its applications are severely restricted by difficulties in SAR image interpretation, which increase the threshold of applications. The Library of Targets Microwave Properties is proposed by integrating microwave remote sensing models, field measured data, SAR images and interpretation keys, different kinds of priori knowledge and application demonstration. It adopts Browser/Server architecture for data sharing and information expression online that provides an integrated information platform for research on microwave remote sensing theory and applications.

Keywords GF-1      water information extraction      NDWI      SVM      object-oriented     
:  TP722.6  
Issue Date: 23 July 2015
E-mail this article
E-mail Alert
Articles by authors
DUAN Qiuya
MENG Lingkui
FAN Zhiwei
HU Weiguo
XIE Wenjun
Cite this article:   
DUAN Qiuya,MENG Lingkui,FAN Zhiwei, et al. Construction of the library of targets microwave properties[J]. REMOTE SENSING FOR LAND & RESOURCES, 2015, 27(4): 189-194.
URL:     OR

[1] 姜景山.微波遥感信息科技发展若干问题的讨论[J].遥感技术与应用, 2005, 20(1):1-5. Jiang J S.Discussion on microwave remote sensing technology[J].Remote Sensing Technology and Application, 2005, 20(1):1-5.

[2] 苏理宏, 李小文, 王锦地, 等.典型地物波谱知识库建库与波谱服务的若干问题[J].地球科学进展, 2003, 18(2):185-191. Su L H, Li X W, Wang J D, et al.Some problems in construction the ground object spectral knowledge database and its services[J].Advance in Earth Sciences, 2003, 18(2):185-191.

[3] 屈永华, 刘素红, 王锦地, 等.中国典型地物波谱数据库的研究与设计[J].遥感信息, 2004(2):5-8. Qu Y H, Liu S H, Wang J D, et al.Study and design on spectral database system of typical objects in China(SpeLib)[J].Remote Sensing Information, 2004(2):5-8.

[4] 王锦地, 张立新, 柳钦火, 等.中国典型地物波谱知识库[M].北京:科学出版社, 2009. Wang J D, Zhang L X, Liu Q H, et al.Spectral Database System of Typical Objects in China[M].Beijing:Science Press, 2009.

[5] 陈水森, 方立刚, 柳钦火, 等.广东省特色农作物标准波谱数据库框架设计与示范应用[J].国土资源遥感, 2005, 17(3):74-78.doi:10.6046/gtzyyg.2005.03.18. Chen S S, Fang L G, Liu Q H, et al.The frame design and application demonstration of the standardized spectral library for featured crops in Guangdong Province[J].Remote Sensing for Land and Resources, 2005, 17(3):74-78.doi:10.6046/gtzyyg.2005.03.18.

[6] Snow-Tools Signature Database[EB/OL].[2014-05-15].

[7] Hiltbrunner D, Strozzi T, Mätzler C, et al.Identification of Electromagnetic Signatures and Data Gaps of Snow Related to Microwave and Optical Measurements[R].Snow-Tools Technical Report WP 310, Contract No.ENV4-CT96-0304, 1997.

[8] Guneriussen T, Solberg R, Kolberg S, et al.Research and development of remote sensing methods for snow hydrology[C]//Botten L, Chew W C, Engheta N, et al.Progress in Electromagnetics Research Symposium.1998:115.

[9] Southern Great Plains 1999(SGP99) Experiment Plan[EB/OL].(2001-6-29)[2014-05-15].

[10] USDA.Soil Moisture Experiments[EB/OL].[2014-05-15].

[11] National Snow and Ice Data Center.Cold Land Processes Field Experiment[EB/OL].[2014-05-15].

[12] Bian X L, Zhang F L, Shao Y, et al.Microwave scattering database construction for typical targets[C]//2011 International Conference on Remote Sensing, Environment and Transportation Engineering(RSETE).Nanjing:IEEE, 2011:3272-3275.

[13] Ulaby F T, Dobson M C.Handbook of Radar Scattering Statistics for Terrain[M].Norwood, MA:Artech House, 1989.

[14] 张景华, 封志明, 姜鲁光.土地利用/土地覆被分类系统研究进展[J].资源科学, 2011, 33(6):1195-1203. Zhang J H, Feng Z M, Jiang L G.Progress on studies of land use/land cover classification systems[J].Resources Science, 2011, 33(6):1195-1203.

[15] 萨师煊, 王珊.数据库系统概论[M].北京:高等教育出版社, 2000. Sa S X, Wang S.An Introduction to Database Systems[M].Beijing:Higher Education Press, 2000.

[1] FAN Yinglin, LOU Debo, ZHANG Changqing, WEI Yingjuan, JIA Fudong. Information extraction technologies of iron mine tailings based on object-oriented classification: A case study of Beijing-2 remote sensing images of the Qianxi Area, Hebei Province[J]. Remote Sensing for Natural Resources, 2021, 33(4): 153-161.
[2] WANG Hua, LI Weiwei, LI Zhigang, CHEN Xueye, SUN Le. Hyperspectral image classification based on multiscale superpixels[J]. Remote Sensing for Natural Resources, 2021, 33(3): 63-71.
[3] WANG Rong, ZHAO Hongli, JIANG Yunzhong, HE Yi, DUAN Hao. Application and analyses of texture features based on GF-1 WFV images in monthly information extraction of crops[J]. Remote Sensing for Natural Resources, 2021, 33(3): 72-79.
[4] CAI Xiang, LI Qi, LUO Yan, QI Jiandong. Surface features extraction of mining area image based on object-oriented and deep-learning method[J]. Remote Sensing for Land & Resources, 2021, 33(1): 63-71.
[5] WANG Lin, XIE Hongbo, WEN Guangchao, YANG Yunhang. A study on water information extraction method of cyanobacteria lake based on Landsat8[J]. Remote Sensing for Land & Resources, 2020, 32(4): 130-136.
[6] WANG Xiaolong, YAN Haowen, ZHOU Liang, ZHANG Liming, DANG Xuewei. Using SVM classify Landsat image to analyze the spatial and temporal characteristics of main urban expansion analysis in Democratic People’s Republic of Korea[J]. Remote Sensing for Land & Resources, 2020, 32(4): 163-171.
[7] LI Xusheng, LIU Yufeng, CHEN Donghua, LIU Saisai, LI Hu. Cloud detection based on support vector machine with image features for GF-1 data[J]. Remote Sensing for Land & Resources, 2020, 32(3): 55-62.
[8] Yizhe WANG, Guo LIU, Li GUO, Shihu ZHAO, Xueli ZHANG. Research on ortho-rectification and true color synthesis technique of GF-1 WFV data in China-Pakistan Economic Corridor[J]. Remote Sensing for Land & Resources, 2020, 32(2): 213-218.
[9] Jisheng XIA, Mengying MA, Zhongren FU. Extraction of mechanical damage surface using GF-2 remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 26-32.
[10] Zhuhong ZHANG, Baoyun WANG, Yumei SUN, Caidong LI, Xianchen SUN, Lingli ZHANG. River extraction from GF-1 satellite images combining stroke width transform and a geometric feature set[J]. Remote Sensing for Land & Resources, 2020, 32(2): 54-62.
[11] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[12] Ning WANG, Jiahua CHENG, Hanye ZHANG, Hongjie CAO, Jun LIU. Application of U-net model to water extraction with high resolution remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(1): 35-42.
[13] Hui YUAN, Qiming QIN, Yuanheng SUN. Validation of LAI retrieval results of winter wheat in Yancheng, Luohe area of Henan Province[J]. Remote Sensing for Land & Resources, 2020, 32(1): 162-168.
[14] Peiqing LOU, Xiaoyu CHEN, Shutong WANG, Bolin FU, Yongyi HUANG, Tingyuan TANG, Ming LING. Object recognition of karst farming area based on UAV image: A case study of Guilin[J]. Remote Sensing for Land & Resources, 2020, 32(1): 216-223.
[15] Liping YANG, Meng MA, Wei XIE, Xueping PAN. Fusion algorithm evaluation of Landsat 8 panchromatic and multispetral images in arid regions[J]. Remote Sensing for Land & Resources, 2019, 31(4): 11-19.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech