Please wait a minute...
 
Remote Sensing for Land & Resources    2019, Vol. 31 Issue (4) : 199-208     DOI: 10.6046/gtzyyg.2019.04.26
|
Spatio-temporal changes and driving factors of environmental and ecological index in Culai-Lianhua area
Chao MA1,2, Panli CAI1,3
1. College of Surveying & Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
2. Key Laboratory of State Bureau of Surveying and Mapping of Mine Spatial Information Technology, School of Surveying and Mapping Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China
3. College of Resources and Environment, University of Chinese Academy of Science, Beijing 100190, China
Download: PDF(8391 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

The strained human-land relationship in habitats which are isolated like islands inland, is an indicator sensitive to regional environmental changes as well as human activities. Based on image data obtained from Landsat MSS/TM/OLI (1982—2016), average annual precipitation and temperature data derived from meteorological stations (1982—2012), and DEM acquired by ASTER, the authors carried out time series analysis and correlation analysis of climate change factors (annual precipitation and temperature), human activity factors (area of cultivated and construction land) and specific remote sensing indexes including NDVI (normalized difference vegetation index) and NDBI (normalized difference building index) in Culai-Lianhua area. Some conclusions have been reached: The trend of vegetation degradation has been obvious in the past 35 years. It is clear that woodland and shrub have been transformed into grassland and sparse grassland, whereas grassland and sparse grassland have been transformed into bare land. The landscape pattern has changed. Woodland is surrounded by cultivated land and construction land. The woodland has been mixed with cultivated and construction land as well. The construction of the core area has made positive effect. In the core area, the growth rate of NDVI is 0.006 9/10 a and the NDBI has decreased at a rate of 0.014/10 a. On the contrary, around the core area, its NDVI has been speeding down at a rate of 0.018/10 a and the growth rate of NDBI is 0.003 5/10 a. The cultivated land has been greatly reduced, and mostly has been transformed into construction land and woodland. There exists a significant negative correlation between the change of woodland area and the change of cultivated and construction land area. In general, both the ecological structure and the landscape pattern have undergone adverse changes in Culai-Lianhua area.

Keywords Culai-Lianhua basin      isolated habitat      land use and land cover change(LUCC)      NDVI      NDBI      ecological pattern     
:  TP79  
Issue Date: 03 December 2019
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Chao MA
Panli CAI
Cite this article:   
Chao MA,Panli CAI. Spatio-temporal changes and driving factors of environmental and ecological index in Culai-Lianhua area[J]. Remote Sensing for Land & Resources, 2019, 31(4): 199-208.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2019.04.26     OR     https://www.gtzyyg.com/EN/Y2019/V31/I4/199
Fig.1  The geographical location of the Culai-Lianhua area
平台传感器 成像时间 轨道号/
帧号
平均云
量/%
是否参与
NDVI计算
Landsat3 MSS 1982-09-15 131/35 0.00
Landsat5 TM 1985-07-27 122/35 17.00
Landsat5 TM 1987-10-05 122/35 1.00
Landsat5 TM 1988-08-04 122/35 1.00
Landsat5 TM 1991-09-30 122/35 0.00
Landsat5 TM 1993-09-03 122/35 1.00
Landsat5 TM 1998-09-01 122/35 5.00
Landsat5 TM 2001-09-09 122/35 1.00
Landsat5 TM 2003-09-15 122/35 1.00
Landsat5 TM 2004-10-03 122/35 0.00
Landsat5 TM 2006-08-22 122/35 39.00
Landsat5 TM 2009-08-30 122/35 1.00
Landsat5 TM 2011-09-21 122/35 0.00
Landsat8 OLI 2013-09-26 122/35 0.45
Landsat8 OLI 2014-07-27 122/35 15.97
Landsat8 OLI 2016-09-02 122/35 1.08
Tab.1  List of remote sensing images (1982—2016)
Fig.2  The total area of the Culai-Lianhua basin
Fig.3  Time series NDVI density segmentation mapping
Fig.4  Time series of LUCC thematic mapping during 1982—2016
Fig.5  The trend of temperature and precipitation in the study area during 1982—2012
Fig.6  Trend of the LUCC in Culai-Lianhua basin during 1982—2016
Fig.7  GlobeLand30 products in Culai-Lianhua area in 2000 and 2010
Fig.8  Variation trend of NDBI in Culai-Lianhua basin during 1988—2016
Fig.9  Variation trend of NDVI in Culai-Lianhua basin during 1988—2016
Fig.10  North-south section of NDVI in Culai basin during 1988—2016
Fig.11  North-south section of NDVI in Lianhua basin during 1988—2016
Fig.12  The percentage of NDVI density division in Culai-Lianhua basin during 1988—2016
Fig.13  The correlation matrix between humanity and natural elements
[1] Turner B L, Moss R H, Skole D L , et al. Relating land use and global land-cover change:A proposal for an IGBP-HDP core project//Report from the IGBP-HDP Working Group on Land-Use/L and-Cover Change.(=IGBP Report 24/HDP Report 5). Stockholm:Royal Swedish Academy of Sciences, 1993.
[2] Lambin E F, Baulies X, Bockstael N , et al. Land-Use and Land-Cover Change (LUCC):Implementation Strategy ( =IGBP Report 48/IHDP Report10), 1999.
[3] Chen C X, Tang P, Wu, Hong G . Improving classification of woodland types using modified prior probabilities and Gaussian mixed model in mountainous landscapes[J]. Int J Remote Sens, 2013,34(23):8518-8533.
[4] Turner II B L, Lambin E F, Reenberg A . The emergence of land change science for global environmental change and sustainability[J]. PNAS, 2007,104(52):20666-20671.
[5] Lambin E F, Baulies X, Bockstael N, et al.Land-use and land-cover change(LUCC) :Implementation strategy[J]//A Core Project of the International Geosphere-Biosphere Programme and the International Human Dimensions Programme on Global Environmental Change.IGBP Report 48.IHDP Report 10.IGBP, 1995, Stockholm: 125.
[6] 刘纪远, 刘明亮, 庄大方 , 等. 中国近期土地利用变化的空间格局分析[J]. 中国科学( D辑), 2002,32(12):1031-1040.
[6] Liu J, Liu M L, Zhang D F , et al. Study on Spatial Pattern of Land-use Change in China During 1995-2000[J]. Science in China (Series D), 2002,32(12):1031-1040.
[7] 佟光臣, 林杰, 陈杭 , 等. 1986—2013年南京市土地利用/覆被景观格局时空变化及驱动力因素分析[J]. 水土保持研究, 2017,24(2):240-245.
[7] Tong G C, Lin J, Chen H , et al. Land use and landscape pattern changes and the driving force factors in Nanjing from 1986 to 2013[J]. Research of Soil and Water Conservation, 2017,24(2):240-245.
[8] 梁文涓 . 我国土地利用变化驱动力研究的4个热点[J]. 安徽农业科学, 2015,43(25):308-309,317.
[8] Liang W J . Four hot spots of studies on driving forces of land use change in China[J]. Journal of Anhui Agricultural Sciences, 2015,43(25):308-309,317.
[9] 胡乔利, 齐永青, 胡引翠 , 等. 京津冀地区土地利用/覆被与景观格局变化及驱动力分析[J]. 中国生态农业学报, 2011,19(5):1182-1189.
[9] Hu Q L, Qi Y Q, Hu Y C , et al. Changes and driving forces of land use/cover and landscape patterns in Beijing-Tianjin-Hebei region[J]. Chinese Journal of Eco-Agriculture, 2011,19(5):1182-1189.
[10] 宋开山, 刘殿伟, 王宗明 , 等. 1954 年以来三江平原土地利用变化及驱动力[J]. 地理学报, 2008(1):93-104.
[10] Song K S, Liu D W, Wang Z M , et al.Land use change and driving force in Sanjiang Plain since 1954[J]. Acta geographica sinica, 2008(1):93-104.
[11] 杨桂山 . 长江三角洲近50年耕地数量变化的过程与驱动机制研究[J].自然资源学报,2001(2):121-127.
[11] Yang G S . The process of driving forces of change arable-land area in Yangtze River delta during 50 years[J].Journal of Natural Resources,2001(2):121-127.
[12] 谭少华, 倪绍祥, 赵万民 . 江苏省土地利用变化及其驱动机理研究[J].地理与地理信息科学,2006(5):50-54.
[12] Tan S H, Ni S X, Zhao W M . Land use change and its driving mechanism in Jiangsu province[J].Geography and Geo-information Science,2006(5):50-54.
[13] 李静, 赵庚星, 范瑞彬 . 黄河三角洲土地利用及土地覆盖变化驱动力分析[J].西北农林科技大学学报(自然科学版),2003(3):117-122.
[13] Li J, Zhao G X, Fan R B . Analysis of driving of the land use and land cover change at the Yellow River Delta[J].Journal of Northwest Science and Technology University of Agriculture and Forest (Nature Science Edition),2003(3):117-122.
[14] 王让会, 孙洪波, 赵振勇 . 新疆且末绿洲土地利用变化机制与驱动力分析[J].干旱区地理,2005(6):849-855.
[14] Wang R H, Sun H B, Zhao Z Y . Analysis on the mechanism and driving forces of land use/cover change in the Qiemo Oasis,Xinjiang[J].Arid Land Geography,2005(6):849-855.
[15] 李丽国, 王宇欣, 邱硕 , 等. 乌鲁木齐市土地利用和覆被生态变化及其驱动力分析[J]. 中国农业大学学报, 2017,22(6):177-188.
[15] Li L G, Wang Y X, Qiu S , et al. Research on land-use and land-cover change of Urumqi City and its driving mechanism[J]. Journal of China Agricultural University, 2017,22(6):177-188.
[16] 周郢 . 新发现的徂徕山炼神庵摩崖考[J].中国道教,2012(3):33-39.
[16] Zhou Y . A newly discovered Culaishan refining god[J].China Taoism,2012(3):33-39.
[17] 友枝龙太郎, 林桂榛, 刘春阳 .徂徕学派对孟子的批判——山鹿素行的地位[J].太平洋学报,2008(10):3-5.
[17] Tomoeda T L, Lin G Z, Liu C Y . Critical views from the Culai School of Confucianism[J].Pacific Journal,2008(10):3-5.
[18] 张兴广, 张佑国, 韩光荣 , 等. 徂徕山野生观赏树木调查分类及开发建议[J]. 安徽农业科学, 2012,40(22):11328-11329,11362.
[18] Zhang X G, Zhang Y G, Han G R , et al.Investigation and classification of wild ornamental trees and their development proposals in Culai mountain[J]. Journal of Anhui Agricultural Sciences, 2012,40(22):11328-11329,11362.
[19] 朱翠玲, 马洪兵, 孟宪鹏 , 等. 中国伞菌属一新记录种[J]. 山东农业大学学报(自然科学版), 2015,46(4):533-536.
[19] Zhu C L, Ma H B, Meng X P , et al.A New record of agaricus in China[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2015,46(4):533-536.
[20] 郑纪庆, 陈彤彤, 刘颖 , 等. 山东徂徕山植物区系的研究[J].武汉植物学研究,2006(1):27-30.
[20] Zheng J Q, Chen T T, Liu Y , et al. Study on the flora of Culai mountain in Shandong Province[J].Journal of Wuhan Botanical Research,2006(1):27-30.
[21] 万渝生, 王世进, 任鹏 , 等. 鲁西徂徕山地区新太古代岩浆作用——锆石SHRIMP U-Pb定年证据[J]. 地球学报, 2015,36(5):634-646.
[21] Wan Y S, Wang S J, Ren P , et al. Neoarchean magmatism in the Culaishan Area,western Shandong:Evidence from SHRIMP Zircon U-Pb Dating[J]. Acta Geoscientia Sinica, 2015,36(5):634-646.
[22] 刘洪义, 东野光亮 . DEM在区域土壤侵蚀中的应用研究[J].吉林农业大学学报,2004(1):73-76,82.
[22] Liu H Y, Dongye G L . Research on the application of DEM in area soil erosion[J].Journal of Jilin Agricultural University,2004(1):73-76,82.
[23] 刘洋 . 文化旅游产业的融合发展研究——以泰安市为例[J].中国商论,2016(2):96-98.
[23] Liu Y . Research on the integration and development of cultural tourism industry-taking Tai’an city as an example[J].China Business and Trade,2016(2):96-98.
[24] 李慧欣 . 非优区位旅游资源可持续开发策略——以泰安徂徕山为例[J].前沿,2005(12):55-58.
[24] Li J X . Sustainable development strategy of non-excellent location tourism resources:A case study of Culai mountain in Tai’an[J].Forward Position,2005(12):55-58.
[25] 王兴, 张琳焓, 王丽娟 , 等. 基于Kriging的加密自动气象站要素场插值与改进[J]. 软件工程师, 2015,18(11):6-10.
[25] Wang X, Zhang L H, Wang L J , et al. An improved Kriging based Algorithm for automatic meteorological station element filed[J]. Software Engineer, 2015,18(11):6-10.
[26] 丁一汇, 任国玉, 石广玉 , 等. 气候变化国家评估报告(I):中国气候变化的历史和未来趋势[J]. 气候变化研究进展, 2006,2(1):3-8.
doi: 10.3969/j.issn.1002-2511.2006.02.004 url: http://d.wanfangdata.com.cn/Periodical/slfh200602004
[26] Ding Y H, Ren G Y, Shi G Y , et al. National assessment report of climate change (I):Climate change in China and its future trend[J]. Advances in Climate Change Research, 2006,2(1):3-8.
[27] 秦大河, Thomas Stocker . IPCC第五次评估报告第一工作组报告的亮点结论[J]. 气候变化研究进展, 2014,10(1):1-6.
doi: 10.3969/j.issn.1673-1719.2014.01.001 url: http://d.wanfangdata.com.cn/Periodical/qhbhyjjz201401001
[27] Qin D H, Thomas Stocker . Highlights of the IPCC working group I fifth assessment report[J]. Advances in Climate Change Research, 2014,10(1):1-6.
[1] SHI Feifei, GAO Xiaohong, XIAO Jianshe, LI Hongda, LI Runxiang, ZHANG Hao. Classification of wolfberry planting areas based on ensemble learning and multi-temporal remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(1): 115-126.
[2] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[3] LIU Yongmei, FAN Hongjian, GE Xinghua, LIU Jianhong, WANG Lei. Estimation accuracy of fractional vegetation cover based on normalized difference vegetation index and UAV hyperspectral images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 11-17.
[4] DU Fangzhou, SHI Yuli, SHENG Xia. Research on downscaling of TRMM precipitation products based on deep learning: Exemplified by northeast China[J]. Remote Sensing for Land & Resources, 2020, 32(4): 145-153.
[5] Biqing WANG, Wenquan HAN, Chi XU. Winter wheat planting area identification and extraction based on image segmentation and NDVI time series curve classification model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 219-225.
[6] Guoce SONG, Zhi ZHANG. Remote sensing monitoring method for dust and wind accumulation in multi-metal mining area of Xin Barag Right Banner,Inner Mongolia[J]. Remote Sensing for Land & Resources, 2020, 32(2): 46-53.
[7] Linyan FENG, Bingxiang TAN, Xiaohui WANG, Xinyun CHEN, Weisheng ZENG, Zhao QI. Object-oriented rapid forest change detection based on distribution function[J]. Remote Sensing for Land & Resources, 2020, 32(2): 73-80.
[8] Jiaxin XU, Shibo FANG, Tingbin ZHANG, Yongchao ZHU, Dong WU, Guihua YI. NDVI changes and its correlation with climate factors of the Three River-Headwater region in growing seasons during 2000—2016[J]. Remote Sensing for Land & Resources, 2020, 32(1): 237-246.
[9] Dongya CHENG, Xudong LI. Comparison of change characteristics of NDVI in mountain basin before and after atmospheric correction[J]. Remote Sensing for Land & Resources, 2020, 32(1): 90-97.
[10] Xianhua YANG, Xiao XU, Lixiao XIAO, Li TIAN, Lina HAO, Peng XU. Evolution trend and driving force analysis of the Chaerhan Salt Lake[J]. Remote Sensing for Land & Resources, 2020, 32(1): 130-137.
[11] Wei WANG, Samat Alim, Abuduwaili Jilili. Geo-detector based spatio-temporal variation characteristics and driving factors analysis of NDVI in Central Asia[J]. Remote Sensing for Land & Resources, 2019, 31(4): 32-40.
[12] Liang TANG, Zhongming ZHAO, Ping TANG. A new method for detection “greening” or “browning” change trend in vegetation from NDVI sequences[J]. Remote Sensing for Land & Resources, 2019, 31(2): 89-95.
[13] Ying LIU, Hui YUE, Enke HOU. Drought monitoring based on MODIS in Shaanxi[J]. Remote Sensing for Land & Resources, 2019, 31(2): 172-179.
[14] Hongzhu HAN, Jianjun BAI, Bo ZHANG, Gao MA. Spatial-temporal characteristics of vegetation phenology in Shaanxi Province based on MODIS time series[J]. Remote Sensing for Land & Resources, 2018, 30(4): 125-131.
[15] Jianhui XU, Yi ZHAO, Minghong XIAO, Kaiwen ZHONG, Huihua RUAN. Relationship of air temperature to NDVI and NDBI in Guangzhou City using spatial autoregressive model[J]. Remote Sensing for Land & Resources, 2018, 30(2): 186-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech