Please wait a minute...
 
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (4) : 200-208     DOI: 10.6046/zrzyyg.2020393
|
A comparative study on the changes in heat island effect in Chinese and foreign megacities
WANG Meiya1(), XU Hanqiu2()
1. School of History and Geography, Minnan Normal University, Zhangzhou 363000, China
2. College of Environment and Resources, Institute of Remote Sensing Information Engineering, Fujian Provincial Key Laboratory of Remote Sensing of Soil Erosion and Disaster Prevention, Fuzhou University, Fuzhou 350116, China
Download: PDF(5151 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Megacities have formed due to rapid urbanization. As a result, the surface cover has rapidly changed, which changes the heat balance of Earth's surface and induces drastic changes in the thermal environment in megacities. With six typical megacities (Beijing, Shanghai, Guangzhou, London, New York, and Tokyo) across the world as study objects and multi-temporal Landsat remote-sensing images of the 1990s, the 2000s, and 2015 as the main data sources, this study compares the changes in the thermal environment among the six megacities and analyzes their causes. For each of the megacities, the surface temperature was determined through reversion using the universal single-channel algorithm and the urban heat island ratio index (URI) was calculated to quantitatively compare the spatial-temporal changes in the heat island effect during the study period. The results are as follows. From the 1990s to 2015, the URI values of Beijing, Shanghai, and Tokyo showed an overall upward trend, and while that of Guangzhou, London, and New York showed an overall downward trend. In 2015, Tokyo suffered the most serious urban heat island effect (URI=0.630), followed by Beijing, Shanghai, New York, and Guangzhou successively, of which the URI values were 0.617, 0.594, 0.555, and 0.530, respectively. In contrast, London had the smallest URI of 0.433. The megacities such as Beijing, Shanghai, Guangzhou, and Tokyo all considerably expanded throughout the study period. In these cities, the built-up areas and impervious surfaces increased by more than 500 km2 and more than 370 km2 on average, respectively in terms of area. They continuously spread outwards and occupied ecological land. Furthermore, green belts can not be formed between urban clusters. All these caused a significant increase in urban surface temperature and especially the significant aggravation of the heat island effect in new urban areas. In comparison, the thermal environment in the old urban areas was significantly improved through urban reconstruction. London and New York were not significantly expanded, where the surface temperature slightly changed. Therefore, it is necessary to pay attention to ecological philosophy, optimize the pattern of urban surface space, and improve the efficiency of ecological land in future urban construction.

Keywords megacities      urban heat environment      urban heat island ratio index      remote sensing      surface landscape pattern     
ZTFLH:  TP79  
Corresponding Authors: XU Hanqiu     E-mail: 286097145@qq.com;hxu@fzu.edu.cn
Issue Date: 23 December 2021
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Meiya WANG
Hanqiu XU
Cite this article:   
Meiya WANG,Hanqiu XU. A comparative study on the changes in heat island effect in Chinese and foreign megacities[J]. Remote Sensing for Natural Resources, 2021, 33(4): 200-208.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2020393     OR     https://www.gtzyyg.com/EN/Y2021/V33/I4/200
Fig.1  Landsat images of the study area
城市 传感器类型 影像获取日期 城市 传感器类型 影像获取日期


北京
TM 1989-08-14

伦敦
TM 1990-08-03
TM 1999-08-10 ETM+ 1999-09-05
OLI/TIRS 2015-08-22 OLI/TIRS 2015-10-02


上海
TM 1989-08-11

纽约
TM 1991-08-17
TM 2002-07-30 TM 2001-07-27
OLI/TIRS 2015-08-03 OLI/TIRS 2015-08-26


广州
TM 1991-09-14

东京
TM 1987-07-24
TM 2003-10-07 ETM+ 2001-09-24
OLI/TIRS 2015-10-18 OLI/TIRS 2015-10-09
Tab.1  Landsat images information of the study area
Fig.2  LST grade map in built-up area of the six megacities
LST等级 北京 上海
1990s 2000s 2015年 1990s 2000s 2015年
面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/%
低温(1) 0.02 0.00 0.09 0.01 0.03 0.00 0.94 0.29 1.57 0.19 18.20 0.95
较低温(2) 0.09 0.02 5.15 0.73 7.88 0.64 12.31 3.73 13.41 1.62 35.20 1.83
次中温(3) 41.52 8.13 45.57 6.47 46.43 3.75 14.47 4.39 40.51 4.88 139.34 7.26
中温(4) 82.03 16.06 158.17 22.47 184.35 14.87 61.19 18.55 207.84 25.06 286.39 14.92
次高温(5) 256.32 50.18 327.66 46.55 682.14 55.03 107.08 32.46 422.45 50.94 805.33 41.97
高温(6) 124.62 24.40 154.69 21.97 287.86 23.22 122.24 37.06 123.27 14.86 494.04 25.75
特高温(7) 6.17 1.21 12.60 1.79 30.87 2.49 11.63 3.52 20.33 2.45 140.34 7.31
建成区面
积/km2
510.78 703.92 1 239.56 329.88 829.37 1 918.93
URI 0.580 0.539 0.617 0.585 0.516 0.594
LST等级 广州 伦敦
1990s 2000s 2015年 1990s 2000s 2015年
面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/%
低温(1) 0.00 0.00 0.11 0.04 7.88 1.18 9.78 0.80 22.27 1.82 8.86 0.72
较低温(2) 2.11 1.87 7.14 2.32 17.60 2.63 20.47 1.68 26.48 2.17 33.25 2.70
次中温(3) 6.53 5.79 15.59 5.06 52.38 7.82 102.26 8.39 97.72 7.99 121.32 9.87
中温(4) 18.49 16.39 46.35 15.05 123.37 18.42 370.25 30.38 398.43 32.58 362.63 29.49
次高温(5) 51.57 45.72 132.80 43.11 336.41 50.24 481.19 39.48 490.36 40.10 513.84 41.79
高温(6) 31.12 27.59 94.44 30.66 122.01 18.22 221.91 18.21 162.46 13.29 169.06 13.75
特高温(7) 2.98 2.64 11.58 3.76 9.90 1.48 12.94 1.06 25.17 2.06 20.53 1.67
建成区面
积/km2
112.80 308.01 669.66 1 218.90 1 222.88 1 229.48
URI 0.589 0.608 0.530 0.449 0.421 0.433
LST等级 纽约 东京
1990s 2000s 2015年 1990s 2000s 2015年
面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/% 面积/km2 比例/%
低温(1) 20.20 2.12 22.22 2.32 20.78 2.16 16.41 0.69 3.92 0.13 0.97 0.03
较低温(2) 19.41 2.04 18.18 1.90 24.13 2.50 49.43 2.09 60.96 2.09 41.57 1.31
次中温(3) 37.80 3.96 46.57 4.86 70.60 7.32 102.15 4.32 71.75 2.46 190.71 6.03
中温(4) 79.16 8.30 117.96 12.31 170.02 17.64 353.45 14.96 400.64 13.72 406.91 12.87
次高温(5) 522.58 54.78 432.98 45.17 349.22 36.23 1 151.84 48.76 1 114.60 38.16 1 208.33 38.23
高温(6) 255.08 26.74 300.69 31.37 306.32 31.78 678.44 28.72 1 218.34 41.71 1 279.83 40.49
特高温(7) 19.60 2.05 19.73 2.06 22.63 2.35 10.47 0.44 97.64 3.34 31.71 1.00
建成区面
积/km2
953.95 958.50 963.90 2 362.24 2 920.65 3 160.92
URI 0.641 0.612 0.555 0.599 0.664 0.630
Tab.2  Statistics table of different LST grade and URI
Fig.3  LST grade change map in the study area from 1990s to 2015

变化情况

变化等级
北京 上海 广州
面积/km2 比例/% 总比例/% 面积/km2 比例/% 总比例/% 面积/km2 比例/% 总比例/%
降低 -4 0.75 0.03 14.27 0.90 0.03 8.76 0.56 0.03 19.02
-3 8.23 0.30 8.49 0.26 5.55 0.32
-2 56.88 2.05 29.87 0.91 50.72 2.90
-1 330.45 11.90 247.83 7.56 276.00 15.77
不变 0 916.48 33.01 33.01 628.06 19.17 19.17 467.18 26.69 26.69
升高 1 834.16 30.04 52.72 807.13 24.63 72.07 416.13 23.77 54.29
2 503.33 18.13 653.39 19.94 301.23 17.21
3 114.77 4.13 550.19 16.79 168.48 9.63
4 11.16 0.40 265.36 8.10 55.48 3.17
5 0.30 0.01 84.80 2.59 8.60 0.49
6 0.00 0.00 0.67 0.02 0.37 0.02
合计 2 776.52 100.00 100.00 3 276.69 100.00 100.00 1 750.33 100.00 100.00
伦敦 纽约 东京
变化等级 面积/km2 比例/% 总比例/% 面积/km2 比例/% 总比例/% 面积/km2 比例/% 总比例/%
降低 -4 8.45 0.34 26.47 0.42 0.02 28.04 2.65 0.05 14.12
-3 19.78 0.79 14.35 0.61 15.79 0.26
-2 74.93 2.99 107.57 4.59 231.44 3.86
-1 559.35 22.35 534.30 22.82 596.23 9.95
不变 0 1 275.04 50.94 50.94 1 324.00 56.55 56.55 3 027.80 50.53 50.53
升高 1 466.34 18.63 22.59 334.88 14.31 15.41 1 398.82 23.34 35.35
2 69.20 2.76 21.70 0.93 553.93 9.24
3 26.23 1.05 3.21 0.14 139.32 2.33
4 3.48 0.14 0.63 0.03 22.49 0.38
5 0.34 0.01 0.06 0.00 3.54 0.06
6 0.07 0.00 0.00 0.00 0.01 0.00
合计 2 503.20 100.00 100.00 2 341.11 100.00 5 992.02 100.00 100.00
Tab.3  LST grade change table in the study area from 1990s to 2015
时间 地点
(a)北京大
兴亦庄片区
(b)上海宝
山南翔片区
(c)广州黄
埔萝岗片区
(d)东京
千叶地区
(e)东京
滨海副中心
(f)北京朝
阳国贸片区
(g)上海静
安苏河湾区域
(h)广州海珠
桥南广场地区
1990s
(B4(R),
B3(G),
B2(B))
2015年
(B5(R),
B4(G),
B3(B))
1990s—
2015年
地表温度
等级变化
图例
Tab.4  LST level transition table in typical areas of Beijing, Shanghai, Guangzhou and Tokyo from 1990s to 2015
北京 上海 广州
土地覆
盖类型
变化
面积/
km2
变化
速率/
(km2·a-1)
变化
面积/
km2
变化
速率/
(km2·a-1)
变化
面积/
km2
变化
速率/
(km2·a-1)
植被 -736.06 -28.3 -1 401.19 -53.9 -336.23 -14.0
不透水面 785.24 30.2 1 408.95 54.2 379.21 15.8
建成区 728.78 28.0 1 589.05 61.1 556.86 23.2
伦敦 纽约 东京
土地覆
盖类型
变化
面积/
km2
变化
速率/
(km2·a-1)
变化
面积/
km2
变化
速率/
(km2·a-1)
变化
面积/
km2
变化
速率/
(km2·a-1)
植被 -25.42 -1.0 -5.05 -0.2 -765.30 -27.3
不透水面 29.04 1.2 21.13 0.9 815.20 29.1
建成区 10.49 0.4 9.94 0.4 798.68 28.5
Tab.5  Urban built-up area and land cover change of the six megacities from 1990s to 2015
[1] 匡文慧, 杨天荣, 刘爱琳, 等. 城市地表覆盖结构组分与热环境调控模型(EcoCity)研究——以北京城市为例[J]. 中国科学(地球科学), 2017,47(7):847-859.
[1] Kuang W H, Yang T R, Liu A L, et al. An EcoCity model for regulating urban land cover structure and thermal environment:Taking Beijing as an example[J]. Science China Earth Sciences, 2017,47(7):847-859.
[2] Xu H Q, Wang M Y, Shi T T, et al. Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index(RSEI)[J]. Ecological Indicators, 2018,93:730-740.
doi: 10.1016/j.ecolind.2018.05.055 url: https://linkinghub.elsevier.com/retrieve/pii/S1470160X18303960
[3] Croft-White M V, Cvetkovic M, Rokitnicki-Wojcik D, et al. A shoreline divided:Twelve-year water quality and land cover trends in Lake Ontario coastal wetlands[J]. Journal of Great Lakes Research, 2017,43(6):1005-1015.
doi: 10.1016/j.jglr.2017.08.003 url: https://linkinghub.elsevier.com/retrieve/pii/S0380133017301235
[4] United Nations. State of the world population 2014-the power of 1.8 billion:Adolescents,youth and the transformation of the future[EB/OL]. https://reliefweb.int/report/world/state-world-population-2014-power-18-billion-adolescents-youth-and-transformation.
url: https://reliefweb.int/report/world/state-world-population-2014-power-18-billion-adolescents-youth-and-transformation
[5] Meng F, Shan B Y, Liu M. Remote-sensing evaluation of the relationship between urban heat islands and urban biophysical descriptors in Jinan,China[J]. Journal of Applied Remote Sensing, 2014,8(1):083693.
doi: 10.1117/1.JRS.8.083693 url: http://remotesensing.spiedigitallibrary.org/article.aspx?doi=10.1117/1.JRS.8.083693
[6] 葛荣凤, 王京丽, 张力小, 等. 北京市城市化进程中热环境响应[J]. 生态学报, 2016,36(19):6040-6049.
[6] Ge R F, Wang J L, Zhang L X, et al. Impacts of urbanization on the urban thermal environment in Beijing[J]. Acta Ecologica Sinica, 2016,36(19):6040-6049.
[7] Feyisa G L, Meilby H, Jenerette G D, et al. Locally optimized separability enhancement indices for urban land cover mapping:Exploring thermal environmental consequences of rapid urbanization in Addis Ababa,Ethiopia[J]. Remote Sensing of Environment, 2016,175:14-31.
doi: 10.1016/j.rse.2015.12.026 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425715302479
[8] Weng Q H, Lu D S. A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis,United States[J]. International Journal of Applied Earth Observation and Geoinformation, 2008,10(1):68-83.
doi: 10.1016/j.jag.2007.05.002 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243407000384
[9] Zheng B J, Myint S W, Fan C. Spatial configuration of anthropogenic land cover impacts on urban warming[J]. Landscape and Urban Planning, 2014,130:104-111.
doi: 10.1016/j.landurbplan.2014.07.001 url: https://linkinghub.elsevier.com/retrieve/pii/S016920461400156X
[10] Chen Y J, Yu S X. Impacts of urban landscape patterns on urban thermal variations in Guangzhou,China[J]. International Journal of Applied Earth Observation and Geoinformation, 2017,54:65-71.
doi: 10.1016/j.jag.2016.09.007 url: https://linkinghub.elsevier.com/retrieve/pii/S0303243416301647
[11] Kotharkar R, Bagade A. Evaluating urban heat island in the critical local climate zones of an Indian city[J]. Landscape and Urban Planning, 2018,169:92-104.
doi: 10.1016/j.landurbplan.2017.08.009 url: https://linkinghub.elsevier.com/retrieve/pii/S0169204617301937
[12] 中国国家统计局. 中国统计年鉴(2015年)[M]. 北京: 中国统计出版社, 2016.
[12] National Bureau of Statistics of China. China statistical yearbook[M]. Beijing: China Statistics Press, 2016.
[13] United Nations. World population prospects:The 2018 revision[EB/OL]. https://population.un.org/wup/Publications/.
url: https://population.un.org/wup/Publications/
[14] 中国住房和城乡建设部. 中国城市建设统计年鉴2014[M]. 北京: 中国统计出版社, 2015.
[14] Ministry of Housing and Urban-Rural Development of the People's Republic of China. China urban construction statistical yearbook[M]. Beijing: China Statistics Press, 2015.
[15] Van de Voorde T, Jacquet W, Canters F. Mapping form and function in urban areas:An approach based on urban metrics and continuous impervious surface data[J]. Landscape and Urban Planning, 2011,102(3):143-155.
doi: 10.1016/j.landurbplan.2011.03.017 url: https://linkinghub.elsevier.com/retrieve/pii/S0169204611001587
[16] Chander G, Markham B L, Helder D L. Summary of current radiometric calibration coefficients for Landsat MSS,TM,ETM+,and EO-1 ALI sensors[J]. Remote Sensing of Environment, 2009,113(5):893-903.
doi: 10.1016/j.rse.2009.01.007 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425709000169
[17] Charvz Jr P S. Image-based atmospheric corrections-revisited and revised[J]. Photogrammetric Engineering and Remote Sensing, 1996,62(9):1025-1036.
[18] Jiménez-Muñoz J C, Cristobal J, Sobrino J A, et al. Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009,47(1):339-349.
doi: 10.1109/TGRS.2008.2007125 url: http://ieeexplore.ieee.org/document/4689350/
[19] Jiménez-Muñoz J C, Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data[J]. Journal of Geophysical Research Atmospheres, 2003,108(D22):4688.
[20] Jiménez-Muñoz J C, Sobrino J A, Skoković D, et al. Land surface temperature retrieval methods from Landsat8 thermal infrared sensor data[J]. IEEE Geoscience and Remote Sensing Letters, 2014,11(10):1840-1843.
doi: 10.1109/LGRS.2014.2312032 url: http://ieeexplore.ieee.org/document/6784508/
[21] 徐涵秋, 陈本清. 不同时相的遥感热红外图像在研究城市热岛变化中的处理方法[J]. 遥感技术与应用, 2003,18(3):129-133.
[21] Xu H Q, Chen B Q. An image processing technique for the study of urban heat island changes using different seasonal remote sensing data[J]. Remote Sensing Technology and Application, 2003,18(3):129-133.
[22] 国家环保部. 生态环境状况评价技术规范(发布稿)[S]. 北京: 中国标准出版社, 2015.
[22] Ministry of Ecology and Environment the People's Republic of China. Technical criterion for ecosystem status evaluation[S]. Beijing: Standards Press of China, 2015.
[23] 住房城乡建设部. 城市生态建设环境绩效评估导则(试行)[M]. 北京: 中国建筑工业出版社, 2015.
[23] Ministry of Housing and Urban-Rural Development of the People's Republic of China. Guidelines for performance assessment of urban ecological construction[M]. Beijing: China Architecture and Building Press, 2015.
[24] 樊智宇, 詹庆明, 刘慧民, 等. 武汉市夏季城市热岛与不透水面增温强度时空分布[J]. 地球信息科学学报, 2019,21(2):226-235.
doi: 10.12082/dqxxkx.2018.180495
[24] Fan Z Y, Zhan Q M, Liu H M, et al. Spatial-temporal distribution of urban heat island and the heating effect of impervious surface in summer in Wuhan[J]. Journal of Geo-Information Science, 2019,21(2):226-235.
[25] Breiman L. Random forests[J]. Machine Learning, 2001,45(1):5-32.
doi: 10.1023/A:1010933404324 url: http://link.springer.com/10.1023/A:1010933404324
[26] Du P J, Samat A, Waske B, et al. Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,105:38-53.
doi: 10.1016/j.isprsjprs.2015.03.002 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271615000611
[27] Padmanaban R, Bhowmik A K, Cabral P. A remote sensing approach to environmental monitoring in a reclaimed mine area[J]. ISPRS International Journal of Geo-Information, 2017,6(12):401.
doi: 10.3390/ijgi6120401 url: http://www.mdpi.com/2220-9964/6/12/401
[28] Schneider A. Monitoring land cover change in urban and peri-urban areas using dense time stacks of Landsat satellite data and a data mining approach[J]. Remote Sensing of Environment, 2012,124:689-704.
doi: 10.1016/j.rse.2012.06.006 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425712002428
[1] NIU Xianghua, HUANG Wei, HUANG Rui, JIANG Sili. A high-fidelity method for thin cloud removal from remote sensing images based on attentional feature fusion[J]. Remote Sensing for Natural Resources, 2023, 35(3): 116-123.
[2] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[3] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[4] TANG Hui, ZOU Juan, YIN Xianghong, YU Shuchen, HE Qiuhua, ZHAO Dong, ZOU Cong, LUO Jianqiang. River and lake sand mining in the Dongting Lake area: Supervision based on high-resolution remote sensing images and typical case analysis[J]. Remote Sensing for Natural Resources, 2023, 35(3): 302-309.
[5] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[6] WANG Jing, WANG Jia, XU Jiangqi, HUANG Shaodong, LIU Dongyun. Exploring ecological environment quality of typical coastal cities based on an improved remote sensing ecological index: A case study of Zhanjiang City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 43-52.
[7] XU Xinyu, LI Xiaojun, ZHAO Heting, GAI Junfei. Pansharpening algorithm of remote sensing images based on NSCT and PCNN[J]. Remote Sensing for Natural Resources, 2023, 35(3): 64-70.
[8] LIU Li, DONG Xianmin, LIU Juan. A performance evaluation method for semantic segmentation models of remote sensing images considering surface features[J]. Remote Sensing for Natural Resources, 2023, 35(3): 80-87.
[9] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[10] ZHANG Xian, LI Wei, CHEN Li, YANG Zhaoying, DOU Baocheng, LI Yu, CHEN Haomin. Research progress and prospect of remote sensing-based feature extraction of opencast mining areas[J]. Remote Sensing for Natural Resources, 2023, 35(2): 25-33.
[11] MA Shibin, PI Yingnan, WANG Jia, ZHANG Kun, LI Shenghui, PENG Xi. High-efficiency supervision method for green geological exploration based on remote sensing[J]. Remote Sensing for Natural Resources, 2023, 35(2): 255-263.
[12] WANG Ping. Application of thermal infrared remote sensing in monitoring the steel overcapacity cutting[J]. Remote Sensing for Natural Resources, 2023, 35(2): 271-276.
[13] LI Tianchi, WANG Daoru, ZHAO Liang, FAN Renfu. Classification and change analysis of the substrate of the Yongle Atoll in the Xisha Islands based on Landsat8 remote sensing data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 70-79.
[14] DIAO Mingguang, LIU Yong, GUO Ningbo, LI Wenji, JIANG Jikang, WANG Yunxiao. Mask R-CNN-based intelligent identification of sparse woods from remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(2): 97-104.
[15] ZHAO Hailan, MENG Jihua, JI Yunpeng. Application status and prospect of remote sensing technology in precise planting management of apple orchards[J]. Remote Sensing for Natural Resources, 2023, 35(2): 1-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech