Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (1) : 76-84     DOI: 10.6046/zrzyyg.2021051
|
A registration algorithm of images with special textures coupling a watershed with mathematical morphology
ZANG Liri1(), YANG Shuwen1,2,3(), SHEN Shunfa1, XUE Qing1, QIN Xiaowei1
1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
Download: PDF(6821 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Existing registration algorithms suffer low efficiency and accuracy in the registration of synthetic aperture Radar (SAR) and optical images. This study proposed a stepwise refinement-based automatic registration algorithm of images with special textures by coupling marker-controlled watershed segmentation and mathematical morphology. Firstly, the improved marker-controlled watershed algorithm was used to extract the features of water bodies from images, and then binarization and mathematical morphology were applied to accurately extract the water regions. Secondly, the centroids of water bodies were extracted for rough registration between images to improve the search efficiency of the subsequent algorithm. Finally, using the optimization algorithm, the optimal transformation parameters when the similarity measure was maximized were obtained and were used to carry out the spatial transformation of SAR images for image registration. In this manner, the precise registration of SAR and optical images was completed. The experimental results show that the algorithm proposed in this study that couples image segmentation with registration reduced calculation amount while ensuring the registration accuracy. Meanwhile, this algorithm effectively solved the difficulty in the automatic registration of SAR and optical high-resolution images that have large differences in gray levels and spatial resolution.

Keywords SAR      image registration      mark-controled watershed      mathematical morphology      special texture     
ZTFLH:  TP79  
Corresponding Authors: YANG Shuwen     E-mail: 1525484225@qq.com;ysw040966@163.com
Issue Date: 14 March 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Liri ZANG
Shuwen YANG
Shunfa SHEN
Qing XUE
Xiaowei QIN
Cite this article:   
Liri ZANG,Shuwen YANG,Shunfa SHEN, et al. A registration algorithm of images with special textures coupling a watershed with mathematical morphology[J]. Remote Sensing for Natural Resources, 2022, 34(1): 76-84.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021051     OR     https://www.gtzyyg.com/EN/Y2022/V34/I1/76
Fig.1  Segmentation results of watershed algorithm
Fig.2  Morphological reconstruction filter
Fig.3  Improved marker-controlled watershed algorithm flow
Fig.4  Morphological processing flow
Fig.5  Overall algorithm flow chart
Fig.6  Image data used in the experiment
实验 影像类型 数据来源 空间分
辨率/m
影像大小
/像素
成像时间
第一
光学影像 GF-2 PAN 0.8 2 000×
2 000
20200411
SAR影像 GF-3 UFS 3 500×500 20200603
第二
光学影像 Google Earth 4.7 1 024×
1 024
20160425
SAR影像 Sentinel-1A IW 13.9 300×300 20160328
Tab.1  Detailed description of experimental data
序号 原始影像 Otsu算法 K-means法 区域生长法 本文算法
1
2
3
4
  

数据源
Otsu算法 K-means法 区域生长法 本文算法
时间/s 准确率/% 时间/s 准确率/% 时间/s 准确率/% 时间/s 准确率/%
GF-2 0.46 54.02 1.52 40.84 30.27 90.04 8.94 98.28
GF-3 0.35 19.17 0.67 18.20 6.52 96.78 2.22 97.55
Tab.3  Precision evaluation of the four segmentation results

数据源
Otsu算法 K-means法 区域生长法 本文算法
时间/s 准确率/% 时间/s 准确率/% 时间/s 准确率/% 时间/s 准确率/%
Google Earth 0.38 91.37 0.98 85.60 13.23 94.96 3.38 96.10
Sentinel-1A 0.32 84.09 0.55 86.64 5.06 94.35 1.90 96.68
平均值 0.38 62.16 0.93 57.82 13.77 94.03 4.11 97.15
  
Fig.7  SAR-SIFT registration experiment of the first group of images
Fig.8  Heterogeneous image registration experiment of the second group of images
Fig.9  Subjective comparison of experimental results
实验 配准算法 RMSE/像素 运行时间/s
第一组 SAR-SIFT算法 264.41
KAZE-HOG 算法 689.03
梯度互信息法 1.25 22.37
本文算法 0.96 21.62
第二组 SAR-SIFT算法 18.54
KAZE-HOG算法 28.38
梯度互信息法 4.29 10.65
本文算法 0.84 9.17
Tab.4  Quantitative comparison of registration methods
[1] 李东宸, 向文豪, 党倩楠, 等. 均匀分布与结构描述ASIFT相结合的SAR与可见光图像配准算法[J]. 测绘学报, 2020, 49(12):1583-1590.
[1] Li D C, Xiang W H, Dang Q N, et al. SAR and optical images registration using uniform distribution and structure description-based ASIFT[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(12):1583-1590.
[2] 叶沅鑫, 郝思媛, 曹云刚. 基于几何结构属性的光学和SAR影像自动配准[J]. 红外与毫米波学报, 2017, 36(6):720-726.
[2] Ye Y X, Hao S Y, Cao Y G. Automatic registration of optical and SAR image using geometric structural properties[J]. Journal of Infrared and Millimeter Waves, 2017, 36(6):720-726.
[3] Ye Y X, Bruzzone L, Shan J, et al. Fast and robust matching for multimodal remote sensing image registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11):9059-9070.
doi: 10.1109/TGRS.36 url: https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=36
[4] 张明祥, 王泽根, 白茹月, 等. 一种由粗到精的光学与SAR遥感图像配准算法[J]. 地球信息科学学报, 2020, 22(11):2238-2246.
doi: 10.12082/dqxxkx.2020.190742
[4] Zhang M X, Wang Z G, Bai R Y, et al. A coarse-to-fine optical and SAR remote sensing image registration algorithm[J]. Journal of Geo-Information Science, 2020, 22(11):2238-2246.
[5] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
doi: 10.1023/B:VISI.0000029664.99615.94 url: http://link.springer.com/10.1023/B:VISI.0000029664.99615.94
[6] Bay H, Tuytelaars T, Gool L V. SURF:Speeded up robust features[C]// European Conference on Computer Vision.Springer, 2006:404-417.
[7] Schwind P, Suri S, Reinartz P, et al. Applicability of the SIFT operator to geometric SAR image registration[J]. International Journal of Remote Sensing, 2010, 31(7-8):1959-1980.
doi: 10.1080/01431160902927622 url: https://www.tandfonline.com/doi/full/10.1080/01431160902927622
[8] Xiang Y, Wang F, You H. OS-SIFT:A robust SIFT-like algorithm for high-resolution optical-to-SAR image registration in suburban areas[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(6):3078.
doi: 10.1109/TGRS.2018.2790483 url: https://ieeexplore.ieee.org/document/8272317/
[9] 王志社, 杨风暴, 纪利娥, 等. 基于聚类分割和形态学的可见光与SAR图像配准[J]. 光学学报, 2014, 34(2):184-190.
[9] Wang Z S, Yang F B, Ji L E, et al. Optical and SAR image registration based on cluster segmentation and mathematical morphology[J]. Acta Optica Sinica, 2014, 34(2):184-190.
[10] 杨勇, 胡思茹. 基于模板匹配约束下的光学与SAR图像配准[J]. 系统工程与电子技术, 2019, 41(10):2235-2242.
[10] Yang Y, Hu S R. Registration of optical and SAR images based on template matching constraints[J]. Systems Engineering and Electronics, 2019, 41(10):2235-2242.
[11] Vincent L, Soille P. Watersheds in digital spaces:An efficient algorithm based on immersion simulations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(6):583-598.
doi: 10.1109/34.87344 url: http://ieeexplore.ieee.org/document/87344/
[12] 韩敬华, 何长涛, 张秋慧, 等. 应用标记控制分水岭分割算法研究激光诱导玻璃体损伤形貌[J]. 光学精密工程, 2010, 18(6):1387-1395.
[12] Han J H, He C T, Zhang Q H, et al. Morphological analysis of laser induced glass bulk damage by marker controlling watershed algorithm[J]. Optics and Precision Engineering, 2010, 18(6):1387-1395.
[13] Parvati K, Prakasa Rao B S, et al. Image segmentation using gray-scale morphology and marker-controlled watershed transformation[J]. Discrete Dynamics in Nature and Society, 2008:307-318.
[14] Genitha C H, Sowmya M, Sri T. Comparative analysis for the detection of marine vessels from satellite images using FCM and marker-controlled watershed segmentation algorithm[J]. Journal of the Indian Society of Remote Sensing, 2020, 48(8):1207-1214.
doi: 10.1007/s12524-020-01148-x url: https://doi.org/10.1007/s12524-020-01148-x
[15] Li P, Xiao X. Multispectral image segmentation by a multichannel watershed-based approach[J]. International Journal of Remote Sensing, 2007, 28(19):4429-4452.
doi: 10.1080/01431160601034910 url: https://www.tandfonline.com/doi/full/10.1080/01431160601034910
[16] 冈萨雷斯. 数字图像处理(第三版)[M]. 北京: 电子工业出版社, 2017:414-415.
[16] Gonzalez. Digital image processing (3rd Edition)[M]. Beijing:Publishing House of Electronics Industry, 2017:414-415.
[17] 衣文文, 杨彬彬, 胡彦磊, 等. 一种基于外形区域的图像配准方法与实现[J]. 计算机技术与发展, 2008 (4):1-4,8.
[17] Yi W W, Yang B B, Hu Y L, et al. Contour-based registration algorithm and its implementation[J]. Computer Technology and Development, 2008(4):1-4,8.
[18] Otsu N. Threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems Man and Cybernetics, 1979, 9.
[19] Adams R, Bishof L. Seeded region growing[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994.
[20] Dellinger F, Delon J, Gousseau Y, et al. SAR-SIFT:A SIFT-like algorithm for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 53(1):453-466.
doi: 10.1109/TGRS.2014.2323552 url: http://ieeexplore.ieee.org/document/6824220/
[21] Wang X, Duan L, Fan Y, et al. A multi-sensor image matching method based on KAZE-HOG features[C]// 2019 IEEE 4th International Conference on Image,Vision and Computing (ICIVC).IEEE, 2019.
[22] 孙铭. 基于梯度互信息的SAR与可见光图像配准[D]. 西安:西安电子科技大学, 2015.
[22] Sun M. SAR and optical image registration based on gradient mutual information[D]. Xi’an:Xidian University, 2015.
[23] 叶发茂, 罗威, 苏燕飞, 等. 卷积神经网络特征在遥感图像配准中的应用[J]. 自然资源遥感, 2019, 31(2):32-37.doi: 10.6046/gtzyyg.2019.02.05.
doi: 10.6046/gtzyyg.2019.02.05
[23] Ye F M, Luo W, Su Y F, et al. Application of convolutional neural network feature to remote sensing image registration[J]. Remote Sensing for Land and Resources, 2019, 31(2):32-37.doi: 10.6046/gtzyyg.2019.02.05.
doi: 10.6046/gtzyyg.2019.02.05
[1] JIANG Decai, ZHENG Xiangxiang, WANG Ning, XIAO Chunlei, ZHU Zhenzhou. Application of the time-series InSAR technology in the identification of geological hazards in the Pearl River Delta region[J]. Remote Sensing for Natural Resources, 2023, 35(3): 292-301.
[2] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[3] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[4] GAO Chen, MA Dong, QU Man, QIAN Jianguo, YIN Haiquan, HOU Xiaozhen. Exploring the anomaly mechanism of borehole strain at the Huailai seismic station based on PS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 153-159.
[5] LIU Hui, XU Xinyue, CHEN Mi, CHEN Fulong, DING Ruili, LIU Fei. Time-series InSAR-based dynamic remote sensing monitoring of the Great Wall of the Ming Dynasty in Qinhuangdao[J]. Remote Sensing for Natural Resources, 2023, 35(2): 202-211.
[6] PAN Jianping, FU Zhanbao, DENG Fujiang, CAI Zhuoyan, ZHAO Ruiqi, CUI Wei. A time-series InSAR-based analysis of surface deformation of hydro-fluctuation belts and the effects of hydrological elements[J]. Remote Sensing for Natural Resources, 2023, 35(2): 212-219.
[7] QIU Lei, ZHANG Xuezhi, HAO Dawei. VideoSAR moving target detection and tracking algorithm based on deep learning[J]. Remote Sensing for Natural Resources, 2023, 35(2): 157-166.
[8] HE Binfang, YAO Yun, FENG Yan, LIU Huimin, DAI Juan. Sentinel-1A based flood inundation monitoring in Anhui Province during the plum rain period of 2020[J]. Remote Sensing for Natural Resources, 2023, 35(1): 140-147.
[9] HU Xiaoqiang, YANG Shuwen, YAN Heng, XUE Qing, ZHANG Naixin. Time-series InSAR-based monitoring and analysis of surface deformation in the Axi mining area, Xinjiang[J]. Remote Sensing for Natural Resources, 2023, 35(1): 171-179.
[10] SUN Sheng, MENG Zhimin, HU Zhongwen, YU Xu. Application of multi-scale and lightweight CNN in SAR image-based surface feature classification[J]. Remote Sensing for Natural Resources, 2023, 35(1): 27-34.
[11] FU Yukai, YANG Shuwen, YAN Heng, XUE Qing, HONG Weili, SU Hang. An SAR and optical image fusion algorithm coupling non-local self-similarity and divergence[J]. Remote Sensing for Natural Resources, 2023, 35(1): 99-106.
[12] ZHANG Zhihua, HU Changtao, ZHANG Zhen, YANG Shuwen. PS-InSAR-based monitoring and analysis of surface subsidence in Shanghai[J]. Remote Sensing for Natural Resources, 2022, 34(3): 106-111.
[13] LI Zhu, FAN Hongdong, GAO Yantao, XU Yaozong. DS-InSAR-based monitoring and analysis of a long time series of surface deformation in the fire area of the Wuda coal field[J]. Remote Sensing for Natural Resources, 2022, 34(3): 138-145.
[14] MA Xuefei, ZHANG Shuangcheng, HUI Wenhua, XU Qiang. InSAR-based large-scale detection and monitoring of the surface deformation in Linfen mining areas, Shanxi Province[J]. Remote Sensing for Natural Resources, 2022, 34(3): 146-153.
[15] ZHANG Shu, ZHOU Zhongfa, WANG Lingyu, CHEN Quan, LUO Jiancheng, ZHAO Xin. Inversion of moisture in surface soil of farmland in karst mountainous areas using multi-temporal SAR images[J]. Remote Sensing for Natural Resources, 2022, 34(3): 154-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech