Please wait a minute...
 
Remote Sensing for Land & Resources    2018, Vol. 30 Issue (1) : 150-156     DOI: 10.6046/gtzyyg.2018.01.21
Orginal Article |
Simulation and prediction of land use in the High Standard Grain Area of Hebi City
Jiemei TIAN1(), Jie CHEN2()
1. School of Public Administration, Zhengzhou University, Zhengzhou 450001, China
2. School of Water Conservancy and Environment, Zhengzhou University, Zhengzhou 450001, China
Download: PDF(990 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In the period of “13th Five-Year Plan”, the national planning attaches great importance to the implementation of construction of the high standard grain area. As one of the high standard grain areas in Henan Province, Hebi City shoulders the burden of ensuring food security. That is why it is of practical significance to study the simulation and prediction of land use in Hebi City in the future. With the use of CA-Markov model and on the basis of the historical process of the coordinated development of urbanization, industrialization and agricultural modernization of Henan Province, the prediction can be divided into two scenarios for the simulation and prediction of land use according to the analysis of the characteristics of land use in Hebi city in the past 20 years. The results can show that the Kappa index of Hebi City in 2013 was about 0.898, which means that the fitting effect is the best, and that the prediction results of CA-Markov model can achieve good fitting effect. Based on comparative analysis of the quantity, the space and the landscape index of Hebi City, it is held that the scenario II can be more in line with the demand of the Central Plains Economic Area and the industrial development as well as with the “green development” in the High Standard Grain Area’s ecological and environmental protection grounds. What’s more, it is in accordance with the planning of Hebi City, the patch shape is more regular, the plaque agglomeration degree is high, the internal continuity is strong, landscape fragmentation degree is low, and the landscape distribution is uniform, thus exhibiting obvious advantages. The authors hold that, in the future, the government should adhere to scenario II model for the development of the construction of the High Standard Grain Area so that the land can realize sustainable development.

Keywords high standard grain area      land use      CA-Markov      simulation and prediction      Hebi City     
:  TP79  
Issue Date: 08 February 2018
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jiemei TIAN
Jie CHEN
Cite this article:   
Jiemei TIAN,Jie CHEN. Simulation and prediction of land use in the High Standard Grain Area of Hebi City[J]. Remote Sensing for Land & Resources, 2018, 30(1): 150-156.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2018.01.21     OR     https://www.gtzyyg.com/EN/Y2018/V30/I1/150
Fig.1  Location map of Hebi City
类型 1993年 2003年 2013年
耕地 1 333.548 1 347.785 1 315.787
建设用地 256.803 308.189 368.901
林地 218.135 216.971 225.528
水域 47.652 46.946 55.961
未利用地 286.036 222.284 175.994
合计 2 142.174 2 142.175 2 142.171
Tab.1  Land use type area of Hebi City in 3 years(km2)
指标 1993—2003年 2003—2013年
建设用地净变化量/km2 51.386 60.712
建设用地扩张速度/(km2·a-1) 5.139 6.071
建设用地扩张强度 0.240 0.283
耕地净变化量/km2 14.237 -31.998
耕地扩张速度/(km2·a-1) 1.424 -3.200
耕地扩张动态度/% 0.110 -0.240
Tab.2  Land use change phase comparison of Hebi City
土地利用类型 相交栅
格数/个
模拟结果
栅格数/个
数量精度
/%
Kappa
指数
耕地 118 235 135 404 87.320 0.826
林地 19 314 23 595 81.093 0.810
建设用地 29 432 34 851 84.451 0.829
水域 3 414 4 868 70.131 0.699
未利用地 14 947 15 931 93.823 0.935
合计 457 610 457 610 100.000 0.898
Tab.3  Simulation accuracy of Hebi City in 2013
Fig.2  Land use map of Hebi City in 2023 under two scenarios of development
土地利用类型 2023年(情景Ⅰ) 2023年(情景Ⅱ)
面积/km2 比例/% 面积/km2 比例/%
耕地 1 247.181 58.268 1 193.000 55.737
林地 204.821 9.569 218.854 10.225
建设用地 417.619 19.511 526.308 24.589
水域 30.873 1.442 76.917 3.594
未利用地 239.937 11.210 125.332 5.855
合计 2 140.431 100.000 2 140.411 100.000
Tab.4  Land use type area and proportion of Hebi City in 2023
Fig.3  Comparison of land use spatial development of Hebi City in 2023
景观格局指数 2023年(情景Ⅰ) 2023年(情景Ⅱ)
AWMSI 7.78 6.68
SHDI 1.24 1.25
SHEI 0.69 0.70
MPS 150.23 155.28
NUMP 3 046.00 2 947.00
Tab.5  Landscape index of land use type of Hebi city in 2023
[1] Parker D C,Manson S M,Janssen M A,et al.Multi-agent systems for the simulation of land-use and land-cover change:A review[J].Annals of the Association of American Geographers,2003,93(2):314-337.
[2] 陈江龙,曲福田,王启仿.经济发达地区土地利用结构变化预测——以江苏省江阴市为例[J].长江流域资源与环境,2003,12(4):317-321.
[2] Chen J L,Qu F T,Wang Q F.Forecast of land structure transition in developed area:A case study in Jiangyin City,Jiangsu Province[J].Resources and Environment in the Yangtze Basin,2003,12(4):317-321.
[3] 席冬梅. 基于遥感和GIS的内蒙古中西部土地利用动态变化与驱动力分析[D].呼和浩特:内蒙古师范大学,2007.
[3] Xi D M.Dynamic Changes and Driving Force Analysis of Land Use in Mid-Western Parts of Inner Mongolia based on Remote Sensing and GIS[D].Hohhot:Inner Mongolia Normal University,2007.
[4] Clarke K C,Hoppen S,Gaydos L.A self-modifying cellular automaton model of historical urbanization in the San Francisco Bay area[J].Environment and Planning B:Urban Analytics and City Science,1997,24(2):247-261.
[5] Clarke K C,Gaydos L J.Loose-coupling a cellular automaton model and GIS:Long-term urban growth prediction for San Francisco and Washington/Baltimore[J].International Journal of Geographical Information Science,1998,12(7):699-714.
[6] 张显峰,崔伟宏.集成GIS和细胞自动机模型进行地理时空过程模拟与预测的新方法[J].测绘学报,2001,30(2):148-155.
[6] Zhang X F,Cui W H.Integrating GIS with cellular automaton model to establish a new approach for spatio-temporal process simulation and prediction[J].Acta Geodaetica et Cartographica Sinica,2001,30(2):148-155.
[7] 荣颖. 基于耕地压力指数的河南省耕地保护与城市化发展研究[D].郑州:河南农业大学,2014.
[7] Rong Y.A Study on Cultivated Land Protection and Urbanization based on Pressure Index in Henan Province[D].Zhengzhou:Henan Agricultural University,2014.
[8] Anderson J R,Hardy E E,Roach J T,et al.A Land Use and Land Cover Classification System for Use with Remote Sensor Data,Geological Survey Professional Paper 964[M].Washington:United States Government Printing Office,1976.
[9] 陈龙泉,郑海金.基于Markov-CA的土地利用/土地覆盖变化动态模型研究[J].测绘信息与工程,2004,29(1):36-38.
[9] Chen L Q,Zheng H J.Dynamic models of land use/land cover changes based on MARKOV-CA[J].Journal of Geomatics,2004,29(1):36-38.
[10] 肖明,吴季秋,陈秋波,等.基于CA-Markov模型的昌化江流域土地利用动态变化[J].农业工程学报,2012,28(10):231-238.
[10] Xiao M,Wu J Q,Chen Q B,et al.Dynamic change of land use in Changhua downstream watershed based on CA-Markov model[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(10):231-238.
[11] Adhikari S,Southworth J.Simulating forest cover changes of Bannerghatta National Park based on a CA-Markov model:A remote sensing approach[J].Remote Sensing,2012,4(10):3215-3243.
[12] Kityuttachai K,Tripathi N K,Tipdecho T,et al.CA-Markov analysis of constrained coastal urban growth modeling:Hua Hin Seaside City,Thailand[J].Sustainability,2013,5(4):1480-1500.
[13] 孟成,卢新海,彭明君,等.基于Markov-C 5.0的CA城市用地布局模拟预测方法[J].中国土地科学,2015,29(6):82-88.
[13] Meng C,Lu X H,Peng M J,et al.A land layout simulation model based on CA and Markov-C 5.0 classification[J].China Land Sciences,2015,29(6):82-88.
[14] 李丽,刘普幸,姚玉龙.近28年金昌市土地利用动态变化及模拟预测[J].生态学杂志,2015,34(4):1097-1104.
[14] Li L,Liu P X,Yao Y L.Land-use dynamic change of Jinchang City in the last 28 years and simulation prediction[J].Chinese Journal of Ecology,2015,34(4):1097-1104.
[15] 施云霞,王范霞,毋兆鹏.基于CLUE_S模型的精河流域绿洲土地利用空间格局多情景模拟[J].国土资源遥感,2016,28(2):154-160.doi:10.6046/gtzyyg.2016.02.24.
[15] Shi Y X,Wang F X,Wu Z P.Multi-simulation of spatial distribution of land use based on CLUE_S in Jinhe Watershed[J].Remote Sensing for Land and Resources,2016,28(2):154-160.doi:10.6046/gtzyyg.2016.02.24.
[16] 河南省社会科学院课题组.河南省“三化”协调发展的历程、成就与经验[J]. 经济研究参考, 2012(49):35-59.
[16] Research Group of Henan Provincial Academy of Social Sciences. The course, achievement and experience of the coordinated development of urbanization,industrialization and agricultural modernization in Henan Province[J]. Review of Economic Research, 2012(49):35-59.
[17] 田洁玫. 基于现代农业发展的北疆棉区农地流转规模效益研究——以玛纳斯县为例[D].乌鲁木齐:新疆农业大学,2013.
[17] Tian J M.Study on the Agricultural Land Reform Efficiency of Cotton Region in North Xinjiang based on Modern Agricultural Development:A Case Study of Manasi Country[D].Urumqi:Xinjiang Agricultural University,2013.
[18] 崔敬涛. 基于Logistic-CA-Markov模型的临沂市土地利用变化模拟预测研究[D].南京:南京大学,2014.
[18] Cui J T.Simulation and Prediction of Land Use Change in Linyi City based on Logistic-CA-Markov Model[D].Nanjing:Nanjing University,2014.
[19] 田洁玫,任彧,陈杰.“五化”视角下鹤壁市土地利用动态变化研究[J].中国农业资源与区划,2016,37(4):228-236.
[19] Tian J M,Ren Y,Chen J.Study on dynamic changes of land use in Hebi City based on development of five modernizations[J].Chinese Journal of Agricultural Resources and Regional Planning,2016,37(4):228-236.
[20] 邬建国. 景观生态学——格局、过程、尺度与等级[M].北京:高等教育出版社,2000.
[20] Wu J G.Landscape Ecology:Pattern,Process,Scale and Hierarchy[M].Beijing:Higher Education Press,2000.
[1] WU Linlin, LI Xiaoyan, MAO Dehua, WANG Zongming. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1): 127-134.
[2] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[3] WU Jiang, LIU Chun, YING Shen, YU Ting. Spatial delineation methods of urban areas[J]. Remote Sensing for Natural Resources, 2021, 33(4): 89-97.
[4] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[5] XIAO Dongsheng, LIAN Hong. Population spatialization based on geographically weighted regression model considering spatial stability of parameters[J]. Remote Sensing for Natural Resources, 2021, 33(3): 164-172.
[6] DENG Xiaojin, JING Changqing, GUO Wenzhang, Yan Yujiang, CHEN Chen. Surface albedos of different land use types in the Junggar Basin[J]. Remote Sensing for Natural Resources, 2021, 33(3): 173-183.
[7] WANG Qingchuan, XI Yantao, LIU Xinran, ZHOU Wen, XU Xinran. Spatial-temporal response of ecological service value to land use change: A case study of Xuzhou City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 219-228.
[8] SONG Qi, FENG Chunhui, GAO Qi, WANG Mingyue, WU Jialin, PENG Jie. Change of cultivated land and its driving factors in Alar reclamation area in the past thirty years[J]. Remote Sensing for Land & Resources, 2021, 33(2): 202-212.
[9] HU Suliyang, LI Hui, GU Yansheng, HUANG Xianyu, ZHANG Zhiqi, WANG Yingchun. An analysis of land use changes and driving forces of Dajiuhu wetland in Shennongjia based on high resolution remote sensing images: Constraints from the multi-source and long-term remote sensing information[J]. Remote Sensing for Land & Resources, 2021, 33(1): 221-230.
[10] YAO Kun, ZHANG Cunjie, HE Lei, LI Yuxia, LI Xiaoju. Dynamic evaluation and prediction of ecological environment vulnerability in the middle-upper reaches of the Yalong River[J]. Remote Sensing for Land & Resources, 2020, 32(4): 199-208.
[11] WANG Dejun, JIANG Qigang, LI Yuanhua, GUAN Haitao, ZHAO Pengfei, XI Jing. Land use classification of farming areas based on time series Sentinel-2A/B data and random forest algorithm[J]. Remote Sensing for Land & Resources, 2020, 32(4): 236-243.
[12] GAO Wenlong, SU Tengfei, ZHANG Shengwei, DU Yinlong, LUO Meng. Classification of objects and LUCC dynamic monitoring in mining area: A case study of Hailiutu watershed[J]. Remote Sensing for Land & Resources, 2020, 32(3): 232-239.
[13] Hailing GU, Chao CHEN, Ying LU, Yanli CHU. Construction of regional economic development model based on satellite remote sensing technology[J]. Remote Sensing for Land & Resources, 2020, 32(2): 226-232.
[14] Ruiqi GUO, Bo LU, Kailin CHEN. Dynamic simulation of multi-scenario land use change based on CLUMondo model: A case study of coastal cities in Guangxi[J]. Remote Sensing for Land & Resources, 2020, 32(1): 176-183.
[15] Haiping WU, Shicun HUANG. Research on new construction land information extraction based on deep learning: Innovation exploration of the national project of land use monitoring via remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(4): 159-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech