Cloud detection, as a crucial step in preprocessing optical satellite images, plays a significant role in the subsequent application analysis. The increasingly enriched optical satellite remote sensing images pose a challenge in achieving quick cloud detection of numerous multi-source satellite remote sensing images. Given that conventional cloud detection exhibits low accuracy and limited universality, this study proposed a multi-scale feature fusion neural network model, i.e., the multi-source remote sensing cloud detection network (MCDNet). The MCDNet comprises a U-shaped architecture and a lightweight backbone network, and its decoder integrates multi-scale feature fusion and a channel attention mechanism to enhance model performance. The MCDNet model was trained using tens of thousands of globally distributed multi-source satellite images, covering commonly used satellite data like Google and Landsat data and domestic satellite data like GF-1, GF-2, and GF-5 data. Several classic semantic segmentation models were used for comparison with the MCDNet model in the experiment. The experimental results indicate that the MCDNet model exhibited superior performance in cloud detection, achieving detection accuracy of over 90% for all types of satellite data. Additionally, the MCDNet model was tested on the Sentinel data that were not used in training, yielding satisfactory cloud detection effects. This demonstrates the MCDNet model’s robustness and potential for use as a general model for cloud detection of medium- to high-resolution satellite images.
Tab.1 Dataset for cloud detection from multi-source remote sensing images
Fig.2 Training curve of the MCDNet
模型
P
R
F1
OA
IoU
SegNet
0.89
0.83
0.86
0.93
0.75
PSPNet
0.87
0.86
0.86
0.93
0.76
HRNetV2
0.94
0.85
0.89
0.94
0.80
UNet
0.85
0.94
0.89
0.95
0.80
BiSeNet
0.84
0.96
0.89
0.95
0.81
DeeplabV3+
0.91
0.90
0.91
0.95
0.83
MFGNet
0.91
0.91
0.91
0.96
0.84
MCDNet
0.93
0.95
0.94
0.97
0.89
Tab.2 Evaluation for cloud detection on multi-source remote sensing images
模型
P
R
F1
OA
IoU
MCDNet-withoutAT
0.92
0.92
0.92
0.96
0.85
MCDNet-Xcep
0.91
0.96
0.93
0.97
0.87
MCDNet-withoutDC
0.92
0.95
0.93
0.97
0.88
MCDNet
0.93
0.95
0.94
0.97
0.89
Tab.3 Evaluation for ablation experiments of MCDNet
卫星
0%云覆盖
20%云覆盖
真彩色影像
云检测结果
真彩色影像
云检测结果
Landsat
GF-5
GF-2
GF-1
Google
卫星
45%云覆盖
80%云覆盖
真彩色影像
云检测结果
真彩色影像
云检测结果
Landsat
GF-5
GF-2
GF-1
Google
Tab.4 Multi-source remote sensing true color images and MCDNet cloud detection results under different cloud coverage conditions
Fig.3 Cloud detection results of MCDNet on Sentinel-2 images
[1]
King M D, Platnick S, Menzel W P, et al. Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(7):3826-3852.
doi: 10.1109/TGRS.2012.2227333
url: http://ieeexplore.ieee.org/document/6422379/
[2]
Yu J, Yan B. Efficient solution of large-scale domestic hyperspectral data processing and geological application[C]// 2017 International Workshop on Remote Sensing with Intelligent Processing (RSIP).IEEE, 2017:1-4.
Stowe L L, McClain E P, Carey R, et al. Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data[J]. Advances in Space Research, 1991, 11(3):51-54.
Bian J, Li A, Liu Q, et al. Cloud and snow discrimination for CCD images of HJ-1A/B constellation based on spectral signature and spatio-temporal context[J]. Remote Sensing, 2016, 8(1):31.
doi: 10.3390/rs8010031
url: http://www.mdpi.com/2072-4292/8/1/31
Ge S L, Dong S Y, Sun G Y, et al. Cloud detection algorithm for images of visual and infrared multispectral imager[J]. Aerospace Shanghai, 2019, 36(s2):204-209.
Wang L, Chen Y, Tang L, et al. Object-based convolutional neural networks for cloud and snow detection in high-resolution multispectral imagers[J]. Water, 2018, 10(11):1666.
doi: 10.3390/w10111666
url: http://www.mdpi.com/2073-4441/10/11/1666
Hong Y, Hsu K L, Sorooshian S, et al. Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system[J]. Journal of Applied Meteorology, 2004, 43(12):1834-1853.
doi: 10.1175/JAM2173.1
url: https://journals.ametsoc.org/doi/10.1175/JAM2173.1
Yu J, Zhang L, Li Q, et al. 3D autoencoder algorithm for lithological mapping using ZY-1 02D hyperspectral imagery:A case study of Liuyuan region[J]. Journal of Applied Remote Sensing, 2021, 15(4):042610.
Jeppesen J H, Jacobsen R H, Inceoglu F, et al. A cloud detection algorithm for satellite imagery based on deep learning[J]. Remote Sensing of Environment, 2019, 229:247-259.
doi: 10.1016/j.rse.2019.03.039
Liu G J, Wang G H, Bi W H, et al. Cloud detection algorithm of remote sensing image based on DenseNet and attention mechanism[J]. Remote Sensing for Natural Resources, 2022, 34(2):88-96.doi:10.6046/zrzyyg.2021128.
Mohajerani S, Saeedi P. Cloud-net+:A cloud segmentation CNN for Landsat8 remote sensing imagery optimized with filtered jaccard loss function[J/OL]. arXiv, 2020(2020-01-23)[2021-04-23]. https://arxiv.org/abs/2001.08768v1.
url: https://arxiv.org/abs/2001.08768v1
[35]
Guo Z S, Li C H, Wang Z M, et al. A cloud boundary detection scheme combined with ASLIC and CNN using ZY-3,GF-1/2 satellite imagery[J]. International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences, 2018, 42(3):455-458.
Qiu Y F, Chai D F. A deep learning method for Landsat image cloud detection without manually labeled data[J]. Remote Sensing for Land and Resources, 2021, 33(1): 102-107.doi:10.6046/gtzyyg.2020090.
[39]
Ronneberger O, Fischer P, Brox T. U-net:Convolutional networks for biomedical image segmentation[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2015:234-241.
[40]
Mohajerani S, Saeedi P. Cloud-Net:An end-to-end cloud detection algorithm for Landsat8 imagery[C]// 2019 IEEE International Geoscience and Remote Sensing Symposium.IEEE, 2019: 1029-1032.
He Q, Sun X, Yan Z, et al. DABNet:Deformable contextual and boundary-weighted network for cloud detection in remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60:5601216.
Zhao H, Shi J, Qi X, et al. Pyramid scene parsing network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017:6230-6239.
[45]
Yu C, Wang J, Peng C, et al. Bisenet:Bilateral segmentation network for real-time semantic segmentation[C]// 15th European Conference on Computer Vision (ECCV), 2018:334-349.
[46]
Sun K, Zhao Y, Jiang B, et al. High-resolution representations for labeling pixels and regions[J/OL]. arXiv, 2019(2019-04-09)[2021-04-23]. https://arxiv.org/abs/1904.04514.pdf.
url: https://arxiv.org/abs/1904.04514.pdf
[47]
Chen L C, Zhu Y, Papandreou G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// 15th European Conference on Computer Vision (ECCV), 2018:833-851.