Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (2) : 142-150     DOI: 10.6046/zrzyyg.2023030
|
Exploring the spatio-temporal variations and forest restoration of burned zones in the Great Xing’an Range based on MODIS time series data
WANG Jian1(), DU Yuling1, GAO Zhao2, LYU Haiyan1, SHI Lei1()
1. College of Information and Management Science, Henan Agricultural University, Zhengzhou 450046, China
2. The First Geodetic Survey Team of the Ministry of Natural Resources, Shaanxi Bureau of Surveying, Mapping and Geoinformation, Xi’an 710054, China
Download: PDF(9746 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Forest fires are one of the most significant disturbance factors affecting forest ecosystems. Exploring their spatio-temporal variations and forest restoration holds certain sociological and ecological significance. The Great Xing’an Range, possessing the largest primitive area in China, is a key area suffering frequent forest fires. Hence, this study extracted the distribution information of burned zones in the Great Xing’an Range from 2002 to 2021 from the MODIS time series products involving burned zones, land cover, and gross primary productivity (GPP). Moreover, it statistically analyzed the post-fire forest restoration. The results show that: ① Fires in the forest area of the Great Xing’an Range showed an overall downward trend from 2002 to 2021, but the burned areas showed fluctuating changes. Both the burned area and fire frequency were the highest in 2003, followed by 2008, with the lowest burned area seen in 2019; ② Forest fires occurred primarily in spring and autumn, with the highest burned area and fire frequency in March and the second highest fire frequency in September; ③ Forest fires manifested an uneven spatial distribution from northeast to southwest, predominantly in the Great Xing’an Range within Heilongjiang and Hulunbuir City of Inner Mongolia. Moreover, the forest fire area in Inner Mongolia far exceeded that in Heilongjiang. The analysis of forest types in burned zones reveals that the burned areas decreased in the order of broad-leaved, mixed, and needle-leaved forests. According to the time series analysis of GPP in burned zones, GPP values recovered the fastest in the first year post-fire, but it took nearly seven years to recover to the pre-fire growth level. Different forest types manifested significantly distinct post-fire restoration rates, which decreased in the order of broad-leaved, needle-leaved, and mixed forests. Overall, ascertaining the spatio-temporal distribution of forest fires can provide data support for the arrangement and adjustment of fire prevention and control efforts, while investigating the post-fire forest restoration can provide a scientific basis for the rehabilitation and sustainable development of forests.

Keywords forest fire      Great Xing’an Range      burned zone      forest restoration      MODIS     
ZTFLH:  TP79  
Issue Date: 14 June 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jian WANG
Yuling DU
Zhao GAO
Haiyan LYU
Lei SHI
Cite this article:   
Jian WANG,Yuling DU,Zhao GAO, et al. Exploring the spatio-temporal variations and forest restoration of burned zones in the Great Xing’an Range based on MODIS time series data[J]. Remote Sensing for Natural Resources, 2024, 36(2): 142-150.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023030     OR     https://www.gtzyyg.com/EN/Y2024/V36/I2/142
Fig.1  Location of the study area
重采样
编号
重采样类型 包含的IGBP类型 对应的IGBP编号
10 针叶林 常绿针叶林、落叶针叶林 1,3
20 阔叶林 常绿阔叶林、落叶阔叶林 2,4
30 针阔混交林 混交林 5
40 其他林种 郁闭灌木丛、稀疏灌木丛、多树草地、稀树草地 6,7,8,9
Tab.1  IGBP forest land cover classification in Great Xing’an Range
Fig.2  Annual changes of forest area and burned area in Greater Khingan Mountains
Fig.3  Monthly changes of forest fires in the Greater Khingan Mountains
Fig.4  Spatial distribution maps of forest fires
森林类型 过火面积/
108 hm2
占总过火面
积的比例/%
森林类型
占比/%
阔叶林 3 453.59 25.33 18.95
针叶林 110.82 0.81 7.39
混交林 221.63 1.63 6.64
其他林种 9 846.31 72.23 67.03
Tab.2  Forest fire area and forest types distribution in the Greater Khingan Mountains
Fig.5  Trend of GPP in the Greater Khingan Mountains forest region
Fig.6  Distribution of cumulative forest overfire in Greater Khingan Mountains
Fig.7  Comparison of the average GPP values in July between the burned area and total forest area
年份 GPP总产值/(×104 gC·m-2) 总产值比例/%
针叶林 阔叶林 混交林 针叶林 阔叶林 混交林
2002年 514.10 65.95 89.40 76.79 9.85 13.35
2003年 288.27 36.97 41.04 78.70 10.09 11.20
2004年 411.10 65.83 63.61 76.05 12.18 11.77
2005年 414.72 73.28 67.79 74.62 13.18 12.20
2006年 401.79 74.80 62.67 74.51 13.87 11.62
2007年 480.75 88.55 74.85 74.63 13.75 11.62
2008年 445.81 72.63 60.89 76.95 12.54 10.51
2009年 504.37 79.85 59.84 78.31 12.40 9.29
2010年 540.19 76.37 66.08 79.13 11.19 9.68
2011年 515.82 70.04 49.75 81.15 11.02 7.83
2012年 610.78 84.05 48.86 82.13 11.30 6.57
2013年 542.83 82.75 38.45 81.75 12.46 5.79
2014年 603.19 111.19 55.01 78.40 14.45 7.15
2015年 559.94 106.39 54.86 77.64 14.75 7.61
2016年 643.04 123.39 65.02 77.34 14.84 7.82
2017年 480.60 111.90 67.15 72.86 16.96 10.18
2018年 354.19 77.83 40.05 75.03 16.49 8.48
2019年 353.97 58.06 32.85 79.57 13.05 7.38
2020年 343.13 52.63 39.41 78.85 12.09 9.06
2021年 347.30 52.51 39.17 79.12 11.96 8.92
均值 467.79 78.25 55.84 77.68 12.92 9.40
Tab.3  GPP production data of different vegetation types in the burned area in July
Fig.8  Means and error bars of GPP in July for different vegetation types in the burned area
[1] 白夜, 王博, 武英达, 等. 2021年全球森林火灾综述[J]. 消防科学与技术, 2022, 41(5):705-709.
[1] Bai Y, Wang B, Wu Y D, et al. A review of global forest fires in 2021[J]. Fire Science and Technology, 2022, 41(5):705-709.
[2] 马振宇, 陈博伟, 庞勇, 等. 基于林火特征分类模型的森林火情等级制图[J]. 国土资源遥感, 2020, 32(1):43-50.doi:10.6046/gtzyyg.20200107.
[2] Ma Z Y, Chen B W, Pang Y, et al. Forest fire potential forecast based on FCCS model[J]. Remote Sensing for Land and Resources, 2020, 32(1) :43-50.doi:10.6046/gtzyyg.20200107.
[3] Sannigrahi S, Pilla F, Basu B, et al. Examining the effects of forest fire on terrestrial carbon emission and ecosystem production in India using remote sensing approaches[J]. The Science of the Total Environment, 2020, 725:138331.
[4] 陈艳英, 马鑫程, 徐彦平, 等. 地形及NDVI在林火遥感监测二次识别中应用的方法探讨[J]. 自然资源遥感, 2022, 34(3):88-96.doi:10.6046/zrzyyg.2021142.
[4] Chen Y Y, Ma X C, Xu Y P, et al. Methods for the application of topography and NDVI in re- identification of remote sensing - based monitoring of forest fires[J]. Remote Sensing for Natural Resources, 2022, 34(3):88-96.doi:10.6046/zrzyyg.2021142.
[5] Li Q, Cui J, Jiang W, et al. Monitoring of the fire in Muli County on March 28,2020,based on high temporal-spatial resolution remote sensing techniques[J]. Natural Hazards Research, 2021, 1(1):20-31.
[6] Pérez-Cabello F, Montorio R, Alves D B. Remote sensing techniques to assess post-fire vegetation recovery[J]. Current Opinion in Environmental Science and Health, 2021, 21:100251.
[7] Marcos B, Gonçalves J, Alcaraz-Segura D, et al. Improving the detection of wildfire disturbances in space and time based on indicators extracted from MODIS data:A case study in northern Portugal[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 78:77-85.
[8] Morton D C, DeFries R S, Nagol J, et al. Mapping canopy damage from understory fires in Amazon forests using annual time series of Landsat and MODIS data[J]. Remote Sensing of Environment, 2011, 115(7):1706-1720.
[9] Giglio L, Roy D P. Assessment of satellite orbit-drift artifacts in the long-term AVHRR FireCCILT11 global burned area data set[J]. Science of Remote Sensing, 2022, 5:100044.
[10] Roy D P, Li Z, Giglio L, et al. Spectral and diurnal temporal suitability of GOES Advanced Baseline Imager (ABI) reflectance for burned area mapping[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 96:102271.
[11] Giglio L, Boschetti L, Roy D P, et al. The Collection 6 MODIS burned area mapping algorithm and product[J]. Remote Sensing of Environment, 2018, 217:72-85.
doi: 10.1016/j.rse.2018.08.005 pmid: 30220740
[12] Zhao J, Wang J, Meng Y, et al. Spatiotemporal patterns of fire-driven forest mortality in China[J]. Forest Ecology and Management, 2023, 529:120678.
[13] 俞昊天, 耿君, 艾达娜·哈克木, 等. 2019—2020年澳大利亚森林火灾遥感监测研究[J]. 测绘通报, 2021(s1):165-169.
[13] Yu H T, Geng J, Adana H, et al. Remote sensing monitoring of forest fires in Australia from 2019 to 2020[J]. Bulletin of Surveying and Mapping, 2021(s1):165-169.
[14] 曾爱聪, 郭新彬, 郑文霞, 等. 基于MODIS卫星火点数据的浙江省林火时空动态变化特征[J]. 北京林业大学学报, 2020, 42(11):39-46.
[14] Zeng A C, Guo X B, Zheng W X, et al. Temporal and spatial dynamic characteristics of forest fire in Zhejiang Province of eastern China based on MODIS satellite hot spot data[J]. Journal of Beijing Forestry University, 2020, 42(11):39-46.
[15] 崔阳, 狄海廷, 邢艳秋, 等. 基于MODIS数据的2001—2018年黑龙江省林火时空分布[J]. 南京林业大学学报(自然科学版), 2021, 45(1):205-211.
doi: 10.12302/j.issn.1000-2006.201910023
[15] Cui Y, Di H T, Xing Y Q, et al. Spatial and temporal distributions of forest fires in Heilongjiang Province from 2001 to 2018 based on MODIS data[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(1):205-211.
[16] Nolè A, Rita A, Spatola M F, et al. Biogeographic variability in wildfire severity and post-fire vegetation recovery across the European forests via remote sensing-derived spectral metrics[J]. Science of the Total Environment, 2022, 823:153807.
[17] Hislop S, Haywood A, Jones S, et al. A satellite data driven approach to monitoring and reporting fire disturbance and recovery across boreal and temperate forests[J]. International Journal of Applied Earth Observation and Geoinformation, 2020, 87:102034
[18] Qin Y, Xiao X, Wigneron J P, et al. Large loss and rapid recovery of vegetation cover and aboveground biomass over forest areas in Australia during 2019-2020[J]. Remote Sensing of Environment, 2022, 278:113087.
[19] 田晓瑞, 代玄, 王明玉, 等. 多气候情景下中国森林火灾风险评估[J]. 应用生态学报, 2016, 27(3):769-776.
[19] Tian X R, Dai X, Wang M Y, et al. Forest fire risk assessment for China under different climate scenarios[J]. Chinese Journal of Applied Ecology, 2016, 27(3) :769-776.
[20] 刘星光, 闫中帅. 2003年大兴安岭春季森林火灾前期气象条件分析[J]. 黑龙江气象, 2003, 20(4):29-30.
[20] Liu X G, Yan Z S. Analysis of meteorological conditions in the early stage of spring forest fire in Daxing’anling in 2003[J]. Heilongjiang Meteorology, 2003, 20(4):29-30.
[21] 吴志伟, 常禹, 贺红士, 等. 大兴安岭呼中林区林火时空分布特征分析[J]. 广东农业科学, 2011, 38(5):189-193.
[21] Wu Z W, Chang Y, He H S, et al. Analyzing the spatial and temporal distribution characteristics of forest fires in Huzhong area in the Great Xing’an Mountains[J]. Guangdong Agricultural Sciences, 2011, 38(5):189-193.
[22] 朱贺, 张珍, 杨凇, 等. 中国南北方林火时空分布及火险期动态变化特征——以黑龙江省和江西省为例[J]. 生态学杂志, 2023, 42(1):198-207.
[22] Zhu H, Zhang Z, Yang S, et al. Temporal and spatial distribution of forest fire and the dynamics of fire danger period in southern and northern China:A case study in Heilongjiang and Jiangxi Provinces[J]. Chinese Journal of Ecology, 2023, 42(1):198-207.
[23] 萨如拉, 周庆, 刘鑫晔, 等. 1980—2015年内蒙古森林火灾的时空动态[J]. 南京林业大学学报(自然科学版), 2019, 43(2):137-143.
doi: 10.3969/j.issn.1000-2006.201806037
[23] Sa R L, Zhou Q, Liu X Y, et al. Studies on the spatial and temporal dynamics of forest fires in Inner Mongolia from 1980 to 2015[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2019, 43(2):137-143.
[24] 张恒, 敖子琦, 乌日汉, 等. 内蒙古大兴安岭主要乔灌树种理化性质及抗火性研究[J]. 西南林业大学学报(自然科学), 2020, 40(4):61-67.
[24] Zhang H, Ao Z Q, Wu R H, et al. Study on physicochemical properties and fire-resistance of main tree and shrub species in Daxing’an Mountains,Inner Mongolia[J]. Journal of Southwest Forestry University(Natural Sciences), 2020, 40(4):61-67.
[25] 张玉红, 闫浩. 森林火灾后植被恢复的遥感监测[J]. 自然灾害学报, 2022, 31(2):127-136.
[25] Zhang Y H, Yan H. RS mornitoring of vegetation restoration after forest fire[J]. Journal of Natural Disasters, 2022, 31(2):127-136.
[1] LI Yimin, FENG Xianjie, LI Yuanting, YANG Xue, XIANG Qianying, JI Peikun. Exploring the spatio-temporal variations and influencing factors of vegetation cover in Yunnan Province[J]. Remote Sensing for Natural Resources, 2024, 36(2): 116-125.
[2] LI Shijie, FENG Huihui, WANG Zhen, YANG Zhuolin, WANG Shu. Ecological environment in the Dongting Lake basin over the past decade: Spatio-temporal dynamic characteristics and their influencing factors from 2010 to 2019[J]. Remote Sensing for Natural Resources, 2024, 36(1): 179-188.
[3] FANG He, ZHANG Yuhui, HE Yue, LI Zhengquan, FAN Gaofeng, XU Dong, ZHANG Chunyang, HE Zhonghua. Spatio-temporal variations of vegetation ecological quality in Zhejiang Province and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(2): 245-254.
[4] MAO Kebiao, YAN Yibo, CAO Mengmeng, YUAN Zijin, QIN Zhihao. Reconstruction of surface temperature data and analysis of spatial and temporal changes in North America[J]. Remote Sensing for Natural Resources, 2022, 34(4): 203-215.
[5] CHEN Yanying, MA Xincheng, XU Yanping, WANG Ying, WANG Yanbo. Methods for the application of topography and NDVI in re-identification of remote sensing-based monitoring of forest fires[J]. Remote Sensing for Natural Resources, 2022, 34(3): 88-96.
[6] ZUO Lu, SUN Leigang, LU Junjing, XU Quanhong, LIU Jianfeng, MA Xiaoqian. MODIS-based comprehensive assessment and spatial-temporal change monitoring of ecological quality in Beijing-Tianjin-Hebei region[J]. Remote Sensing for Natural Resources, 2022, 34(2): 203-214.
[7] HU Yingying, DAI Shengpei, LUO Hongxia, LI Hailiang, LI Maofen, ZHENG Qian, YU Xuan, LI Ning. Spatio-temporal change characteristics of rubber forest phenology in Hainan Island during 2001—2015[J]. Remote Sensing for Natural Resources, 2022, 34(1): 210-217.
[8] ZHANG Aizhu, WANG Wei, ZHENG Xiongwei, YAO Yanjuan, SUN Genyun, XIN Lei, WANG Ning, HU Guang. A hierarchical spatial-temporal fusion model[J]. Remote Sensing for Natural Resources, 2021, 33(3): 18-26.
[9] WEI Geng, HOU Yuqiao, ZHA Yong. Analysis of aerosol type changes in Wuhan City under the outbreak of COVID-19 epidemic[J]. Remote Sensing for Natural Resources, 2021, 33(3): 238-245.
[10] WEI Geng, HOU Yuqiao, HAN Jiamei, ZHA Yong. The estimation of PM2.5 mass concentration based on fine-mode aerosol and WRF model[J]. Remote Sensing for Land & Resources, 2021, 33(2): 66-74.
[11] CHEN Baolin, ZHANG Bincai, WU Jing, LI Chunbin, CHANG Xiuhong. Historical average method used in MODIS image pixel cloud compensation: Exemplified by Gansu Province[J]. Remote Sensing for Land & Resources, 2021, 33(2): 85-92.
[12] YANG Huan, DENG Fan, ZHANG Jiahua, WANG xueting, MA Qingxiao, XU Nuo. A study of information extraction of rape and winter wheat planting in Jianghan Plain based on MODIS EVI[J]. Remote Sensing for Land & Resources, 2020, 32(3): 208-215.
[13] Gang DENG, Zhiguang TANG, Chaokui LI, Hao CHEN, Huanhua PENG, Xiaoru WANG. Extraction and analysis of spatiotemporal variation of rice planting area in Hunan Province based on MODIS time-series data[J]. Remote Sensing for Land & Resources, 2020, 32(2): 177-185.
[14] Kailun JIN, Lu HAO. Evapotranspiration estimation in the Jiangsu-Zhejiang-Shanghai Area based on remote sensing data and SEBAL model[J]. Remote Sensing for Land & Resources, 2020, 32(2): 204-212.
[15] Bing ZHAO, Kebiao MAO, Yulin CAI, Xiangjin MENG. Study of the temporal and spatial evolution law of land surface temperature in China[J]. Remote Sensing for Land & Resources, 2020, 32(2): 233-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech