Please wait a minute...
Remote Sensing for Natural Resources    2021, Vol. 33 Issue (4) : 235-242     DOI: 10.6046/zrzyyg.2020418
The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining
GAO Wenlong1(), ZHANG Shengwei1,2,3(), LIN Xi1, LUO Meng1, REN Zhaoyi1
1. College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
2. Key Laboratory of Protection and Utilization of Water Resources of Inner Mongolia Atuonomous Region, Hohhot 010018, China
3. Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application of Agriculture and Animal Husbandry, Hohhot 010018, China
Download: PDF(4831 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    

Soil is the largest potential reservoir of carbon, and the content of soil organic matter (SOM) is the key influencing factor of soil carbon storage. Therefore, SOM is an important index in the analysis of the changes in soil carbon storage. This paper aims to understand the optimal response bands in spectra to the SOM content in the process of coal mining and the changes in the temporal-spatial dynamic patterns of the SOM in a whole coal mining area. Based on the linear regression analysis of measured SOM, near-earth hyperspectral reflectance, and satellite multispectral reflectance, the SOM changes in the study area on June 1, July 4, and September 21, 2019 were quantitatively analyzed, and the SOM changes in underground coal mines (named Dahaize, Balasu, Nalinhe 2, and Yingpanhao) and their surrounding river basins were monitored. The SOM inversion results obtained using the first-order differential transformation of the near-earth hyperspectral reflectance were the closest to the measured SOM. A regression inversion model was established based on the extracted hyperspectral and multispectral characteristic bands and their correlation with the SOM. As indicated by the precision verification results, the correlation between the values predicted through SOM reversion and measured SOM values reached 0.90. Meanwhile, the SOM content in the study area was high in the east and low in the west and it gradually decreased along the upper, middle, and lower reaches of rivers and estuaries. The SOM content obtained through pre-mining simulation was 5% higher than that acquired via remote sensing-based estimation, indicating that coal mining affects the SOM content to a certain extent. It is also proven that the linear regression model of SOM inversion has the prospect of wide application. The above results will provide bases for quantitative research, management, and sustainable development of soil resources and ecological environment in the study area.

Keywords hyperspectral images      soil organic matter(SOM)      coal mine      soil moisture content      hyperspectral remote sensing     
ZTFLH:  TP79S15  
Corresponding Authors: ZHANG Shengwei     E-mail:;
Issue Date: 23 December 2021
E-mail this article
E-mail Alert
Articles by authors
Wenlong GAO
Shengwei ZHANG
Meng LUO
Zhaoyi REN
Cite this article:   
Wenlong GAO,Shengwei ZHANG,Xi LIN, et al. The remote sensing-based estimation and spatial-temporal dynamic analysis of SOM in coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(4): 235-242.
URL:     OR
Fig.1  Overview of study area and sampling point location
Fig.2  Correlation between SOM and Spectrum
建模样本 30 0.14 4.66 1.96 1.29 0.66
验证样本 15 0.72 3.99 2.12 1.05 0.50
总体样本 45 0.14 4.66 2.01 1.21 0.60
Tab.1  Basic statistic characteristic values of SOM content
波段组合 回归方程 R2 RMSE
绿 Y=2.27 X绿+3.14 0.32 5.31
Y=1.42 X+4.72 0.46 4.39
近红 Y=1.38 X近红-4.83 0.70 4.24
Y=0.08 X绿+0.19 X+0.18 X近红-1.9 0.82 2.03
Tab.2  Linear regression comparison
Fig.3  Spatial distribution of SOM in different times
Fig.4  Influence of SWC to SOM
Fig.5  SOM inversion before mining
Fig.6  Accuracy evaluation of SOM inversion
[1] Tian S Q, Wang L, Liu Y L, et al. Degradation of organic pollutants by ferrate/biochar:Enhanced formation of strong intermediate oxidative iron species[J]. Water Research, 2020,183,116054.
doi: 10.1016/j.watres.2020.116054 url:
[2] Thomas G, Léa C, Yann Q, et al. Historical CO2 emissions from land use and land cover change and their uncertainty[J]. Biogeoscuences, 2020,17(15):4075-4101.
[3] Emily E, Oldfield S, et al. Direct evidence using a controlled greenhouse study for threshold effects of soil organic matter on crop growth[J]. Ecological Applications, 2020,30(4):1-12.
[4] Cheng Q, Jia W, Hu G X, et al. Enhancement and improvement of selenium in soil to the resistance of rape stem against Sclerotinia sclerotiorum and the inhibition of dissolved organic matter derived from rape straw on mycelium[J]. Environmental Pollution, 2020,265,114827.
doi: S0269-7491(20)30775-2 pmid: 32454382
[5] 程朋根, 吴剑, 李大军, 等. 土壤有机质高光谱遥感和地统计定量预测[J]. 农业工程学报, 2009,25(3):142-147.
[5] Cheng P G, Wu J, Li D J, et al. Quantitative prediction of soil organic matter content using hyper spectral remote senging and geo-statistics[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009,25(3):142-147.
[6] Sparling G P, Wheeler D, Vesely E T, et al. What is soil organic matter worth?[J]. Journal of Environmental Quality, 2006,35(2):548-557.
pmid: 16510699
[7] 夏楠, 丁建丽, 等. 基于多光谱数据的荒漠矿区土壤有机质估算模型[J]. 农业工程学报, 2016,32(6):263-267.
[7] Xia N, Ding J L, et al. Estimation model of soil organic matter in desert mining area based on multispectral image data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016,32(6):263-267.
[8] Qiao X X, Wang C, Feng M C, et al. Hyperspectral estimation of soil organic matter based on different spectral preprocessing techniques[J]. Spectroscopy Letters, 2017,50(3):156-163.
doi: 10.1080/00387010.2017.1297958 url:
[9] 刘明杰, 徐卓揆, 郜允兵, 等. 基于机器学习的稀疏样本下的土壤有机质估算方法[J]. 地球信息科学学报, 2020,22(9):1799-1813.
doi: 10.12082/dqxxkx.2020.190441
[9] Liu M J, Xu Z K, Gao Y B, et al. Estimating soil organic matter based on machine learning under sparse sample[J]. Journal of Geo-information Science, 2020,22(9):1799-1813.
[10] Paula A, Luis E, Sáenz de M, et al. Influence of environmental variables on the structure and composition of soil bacterial communities in natural and constructed wetlands[J]. Science of the Total Environment, 2015, 506-507:380-390.
doi: 10.1016/j.scitotenv.2014.11.039 url:
[11] Ana M G, Leopoldo G. Land-use/cover change effects and carbon controls on volcanic soil profiles in highland temperate forests[J]. Geoderma, 2012(170):390-402.
[12] 贺军亮, 韩超山, 韦锐, 等. 基于偏最小二乘的土壤重金属镉间接反演模型[J]. 国土资源遥感, 2019,31(4):96-103.doi: 10.6046/gtzyyg.2019.04.13.
doi: 10.6046/gtzyyg.2019.04.13
[12] He J L, Han C S, Wei R, et al. Research on indirect hyperspectral estimating model of heavy metal Cd based on partial least squares regression[J]. Remote Sensing for Land and Resources, 2019,31(4):96-103.doi: 10.6046/gtzyyg.2019.04.13.
doi: 10.6046/gtzyyg.2019.04.13
[13] 聂哲, 李秀芬, 吕家欣, 等. 东北典型黑土区表层土壤有机质含量高光谱反演研究[J]. 土壤通报, 2019,50(6):1285-1293.
[13] Nie Z, Li X F, Lyu J X, et al. Hyperspectral retrieval of surface soil organic matter content in a typical black soil region of northeast china[J]. Chinese Jourmal of Soil Science, 2019,50(6):1285-1293.
[14] Lin C, Zhu A X, Wang Z F, et al. The refined spatiotemporal representation of soil organic matter based on remote images fusion of Sentinel-2 and Sentinel-3[J]. International Journal of Applied Earth Observations and Geoinformation, 2020,89, 1102094.
[15] Galvao L S, Vitorello I. Variability of laboratory measured soil lines of soils from southheastern Brazil[J]. Remote Sensing of Environment, 1998(63):166-181.
[16] 亚森江·喀哈尔, 杨胜天, 尼格拉·塔什甫拉提, 等. 基于分数阶微分优化光谱指数的土壤电导率高光谱估算[J]. 生态学报, 2019,39(19):7237-7248.
[16] Yasenjiang K, Yang S T, Nigara T, et al. Hyperspectral estimation of soil electrical conductivity based on fractional order differentially optimised spectral indices[J]. Acta Ecologica Sinica, 2019,39(19):7237-7248.
[17] 徐彬彬, 段昌达. 南二坡光谱反射率特性与有机质含量的相关性[J]. 科学通报, 1980(6):282-284.
[17] Xu B B, Duan C D. Correlation between spectral reflectance and organic matter content of the Nanerpo[J]. Science Bulletin, 1980(6):282-284.
[18] 叶勤, 姜雪芹, 李西灿, 等. 基于高光谱数据的土壤有机质含量反演模型比较[J]. 农业机械学报, 2017,48(3):164-172.
[18] Ye Q, Jiang X Q, Li X C, et al. Comparison on inversion model of soil organic matter content based on hyperspectral data[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017,48(3):164-172.
[19] Zhu M K, Kong F L, Li Y, et al. Effects of moisture and salinity on soil dissolved organic matter and ecological risk of coastal wetland[J]. Environmental Research, 2020,187,109659.
doi: 10.1016/j.envres.2020.109659 url:
[20] Hong Y S, Chen S C, Zhang Y, et al. Rapid identification of soil organic matter level via visible and near-infrared spectroscopy:Effects of two-dimensional correlation coefficient and extreme learning machine[J]. Science of the Total Environment, 2018,644:1232-1243.
doi: 10.1016/j.scitotenv.2018.06.319 url:
[21] Al-Abbas A H, Swain P H, Baumgarder M F, et al. Relating organic matter and clay content to the multi-spectral radiance of soils[J]. Soil Science, 1972,114(6):477-485.
doi: 10.1097/00010694-197212000-00011 url:
[22] 国佳欣, 朱青, 赵小敏, 等. 不同土地利用类型下土壤有机碳含量的高光谱反演[J]. 应用生态学报, 2020,31(3):863-871.
[22] Guo J X, Zhu Q, Zhao X M, et al. Hyper-spectral inversion of soil organic carbon content under different land use typrs[J]. Chinese Journal of Applied Ecology, 2020,31(3):863-871.
[23] 毛丽, 苏志珠, 王国玲, 等. 毛乌素沙地不同土地利用类型的土壤粒度及有机质特征[J]. 干旱区研究, 2019,36(3):589-598.
[23] Mao L, Su Z Z, Wang G L, et al. Soil particle size and organic matter content of different land use types in the Mu Us sandland[J]. Arid Zone Research, 2019,36(3):589-598.
[24] Lin L X, Gao L P, Xue F C, et al. Hyperspectral analysis of total nitrogen in soil using a synchronized decoloring fuzzy measured value method[J]. Soil & Tillage Research, 2020,202:104658.
[25] 亚森江·喀哈尔, 茹克亚·萨吾提, 尼加提·卡斯木, 等. 优化光谱指数的露天煤矿区土壤重金属含量估算[J]. 光谱学与光谱分析, 2019,39(8):2486-2494.
[25] Yasenjiang K, Rukeya S, Nijat K, et al. Estimation of heavy metal contents in soil around open pit coal mine area based on optimized spectral index[J]. Spectroscopy and Spectral Analysis, 2019,39(8):2486-2494.
doi: 10.3964/j.issn.1000-0593(2019)08-2486-09
[26] Tatiana F R, Luiza C, et al. Temperature sensitivity of soil organic matter decomposition varies with biochar application and soil type[J]. Pedosphere, 2020,30(3):336-345.
doi: 10.1016/S1002-0160(20)60013-3 url:
[27] 侯增福, 刘镕源, 闫柏琨, 等. 基于波段选择与学习字典的高光谱图像异常探测[J]. 国土资源遥感, 2019,31(1):33-41.doi: 10.6046/gtzyyg.2019.01.05.
doi: 10.6046/gtzyyg.2019.01.05
[27] Hou Z F, Liu R Y, Yan B K, et al. Hyperspectral imagery anomaly detection based on band selection and learning dictionary[J]. Remote Sensing for Land and Resources, 2019,31(1):33-41.doi: 10.6046/gtzyyg.2019.01.05.
doi: 10.6046/gtzyyg.2019.01.05
[28] Patel S S, Ramachandran P. A comparison of machine learning techniques for modeling river flow time series:The case of upper Cauvery River Basin[J]. Water Resources Management, 2015,29(2):589-602.
doi: 10.1007/s11269-014-0705-0 url:
[29] 郑昭佩, 刘新作. 土壤质量及其评价[J]. 应用生态学报, 2003,14(1):131-134.
[29] Zheng Z P, Liu X Z, et al. Soil quality and its evaluation[J]. Chinese Journal of Applied Ecology, 2003,14(1):131-134.
[30] Moura-Bueno J M, Dalmolin R S D, Caten A T, et al. Stratification of a local VIS-NIR-SWIR spectral library by homogeneity criteria yields more accurate soil organic carbon predictions[J]. Geoderma, 2019,337:565-581.
doi: 10.1016/j.geoderma.2018.10.015
[31] Gomez C, Adeline K, Bacha S, et al. Sensitivity of clay content prediction to spectral configuration of VNIR/SWIR imaging data,from multispectral to hyperspectral scenarios[J]. Remote Sensing of Environment, 2018,204:18-30.
doi: 10.1016/j.rse.2017.10.047 url:
[32] 张敏, 刘爽, 刘勇, 等. 黄土丘陵缓坡风沙区不同土地利用类型土壤水分变化特征[J]. 水土保持学报, 2019,33(3):115-120,128.
[32] Zhang M, Liu S, Liu Y, et al. Soil moisture variation characteristics of different land use types in the moderate slope sandy area of loess hilly region[J]. Journal of Soil and Water Conservation, 2019,33(3):115-120,128.
[33] Wang D, He N P, Wang Q, et al. Effects of temperature and moisture on soil organic matter decomposition along elevation gradients on the Changbai Mountains,Northeast China[J]. Pedosphere, 2016,26(3):399-407.
doi: 10.1016/S1002-0160(15)60052-2 url:
[34] Peng F, Katherine M H, Guan K Y, et al. Estimating photosynthetic traits from reflectance spectra:Asynjournal of spectral indices,numerical inversion,and partialleast square regression[J]. Plant,Cell & Environment, 2020,43(5):1103-1330.
[35] 吴志远, 彭苏萍, 杜文凤, 等. 干旱地区煤层开采对地表土壤理化性质的影响[J]. 水土保持研究, 2019,26(5):75-80.
[35] Wu Z Y, Peng S P, Du W F, et al. Effect of coal mining on surface soil physicochemical of sandy land in the arid region[J]. Journal of Soil and Water Conservation, 2019,26(5):75-80.
[36] Kaczmarek‐Derda W, Helgheim M, Netland J, et al. Impacts of soil moisture level and organic matter content on growth of two Juncus species and Poa pratensis grown under acid soil conditions[J]. Weed Research, 2019,59(6):490-500.
doi: 10.1111/wre.12387
[37] 毕银丽, 胡晶晶, 刘京. 煤矿微生物复垦区灌木林下土壤养分的空间异质性[J]. 煤炭学报, 2020,45(8):2908-2917.
[37] Bi Y L, Hu J J, Liu J. Spatial heterogeneity of soil nutrients under shrubbery in micro-reclamation demonstration base in coal mine areas of China[J]. Journal of China Coal Society, 2020,45(8):2908-2917.
[38] 刘军, 张成福, 孙冬杰, 等. 草原区煤矿开采对周边旱作农田土壤养分和重金属的影响[J]. 生态与农村环境学报, 2019,35(7):909-916.
[38] Liu J, Zhang C F, Sun D J, et al. The impact of coal mining on soil nutrients and heavy metals in rainfed farmland in arid grassland area[J]. Journal of Ecology and Rural Environment, 2019,35(7):909-916.
[39] Yang F, Huang J P, Zhou C L, et al. Taklimakan desert carbon-sink decreases under climate change[J]. Science Bulletin, 2020,65(6):431-433.
doi: 10.1016/j.scib.2019.12.022 url:
[1] GUO Yi, GAN Fuping, YAN Bokun, BAI Juan, XING Naichen, LIU Qi. Spatio-temporal distribution and influencing factors of soil moisture content in Henan Province during 1948—2021[J]. Remote Sensing for Natural Resources, 2023, 35(3): 241-252.
[2] YU Hang, AN Na, WANG Jie, XING Yu, XU Wenjia, BU Fan, WANG Xiaohong, YANG Jinzhong. High-resolution remote sensing-based dynamic monitoring of coal mine collapse areas in southwestern Guizhou: A case study of coal mine collapse areas in Liupanshui City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 310-318.
[3] LIU Xiaoyang, WANG Jie, DONG Qilang, ZHOU Yingjie, LI Li, YU Hang. A 3S-based study on the current status and countermeasures for the collapse of mined-out areas in Anhui Province[J]. Remote Sensing for Natural Resources, 2023, 35(1): 155-160.
[4] KONG Zhuo, YANG Haitao, ZHENG Fengjie, LI Yang, QI Ji, ZHU Qinyu, YANG Zhonglin. Research advances in atmospheric correction of hyperspectral remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(4): 1-10.
[5] WANG Qian, REN Guangli. Application of hyperspectral remote sensing data-based anomaly extraction in copper-gold prospecting in the Solake area in the Altyn metallogenic belt, Xinjiang[J]. Remote Sensing for Natural Resources, 2022, 34(1): 277-285.
[6] SHA Yonglian, WANG Xiaowen, LIU Guoxiang, ZHANG Rui, ZHANG Bo. SBAS-InSAR-based monitoring and inversion of surface subsidence of the Shadunzi Coal Mine in Hami City, Xinjiang[J]. Remote Sensing for Natural Resources, 2021, 33(3): 194-201.
[7] JIANG Yanan, ZHANG Xin, ZHANG Chunlei, ZHONG Chengcheng, ZHAO Junfang. Classification of remote sensing images based on multi-scale feature fusion using local binary patterns[J]. Remote Sensing for Natural Resources, 2021, 33(3): 36-44.
[8] ZANG Chuankai, SHEN Fang, YANG Zhengdong. Aquatic environmental monitoring of inland waters based on UAV hyperspectral remote sensing[J]. Remote Sensing for Natural Resources, 2021, 33(3): 45-53.
[9] HU Xinyu, XU Zhanghua, CHEN Wenhui, CHEN Qiuxia, WANG Lin, LIU Hui, LIU Zhicai. Construction and application effect of normalized shadow vegetation index NSVI based on PROBA/CHRIS image[J]. Remote Sensing for Land & Resources, 2021, 33(2): 55-65.
[10] GAO Junhua, LIU Shasha, YANG Jinzhong, ZHAO Mingpeng, LIU Xinyue, ZOU Lianxue. Gray correlation evaluation of geological environment in the open-pit coal mine concentration area based on remote sensing:A case study of the Zhungeer Coalfield[J]. Remote Sensing for Land & Resources, 2021, 33(1): 183-190.
[11] WANG Ruijun, ZHANG Chunlei, SUN Yongbin, WANG Shen, DONG Shuangfa, WANG Yongjun, YAN Bokun. Application of hyperspectral spectroscopy to constructing polymetallic prospecting model in Hongshan, Gansu Province[J]. Remote Sensing for Land & Resources, 2020, 32(3): 222-231.
[12] Ruhan A, Fang HE, Biaobiao WANG. Hyperspectral images classification via weighted spatial-spectral dimensionality reduction principle component analysis[J]. Remote Sensing for Land & Resources, 2019, 31(2): 17-23.
[13] Bing TU, Xiaofei ZHANG, Guoyun ZHANG, Jinping WANG, Yao ZHOU. Hyperspectral image classification via recursive filtering and KNN[J]. Remote Sensing for Land & Resources, 2019, 31(1): 22-32.
[14] Xiaobo ZHANG, Xuesheng ZHAO, Daqing GE, Bin LIU, Ling ZHANG, Man LI, Yan WANG. Subsidence monitoring of Huainan coal mine from Sentinel TOPS images based on Stacking technique[J]. Remote Sensing for Land & Resources, 2018, 30(4): 200-205.
[15] Donghui ZHANG, Yingjun ZHAO, Kai QIN. Design and construction of the typical ground target spectral information system[J]. Remote Sensing for Land & Resources, 2018, 30(4): 206-211.
Full text



Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech