MaxEnt-based multi-class classification of land use in remote sensing image interpretation
XIONG Dongyang1,2,3(), ZHANG Lin2,4, LI Guoqing2,4()
1. The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling 712100, China 2. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China 3. University of Chinese Academy of Sciences, Beijing 100049, China 4. State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling 712100, China
The one-class classification (OCC) of land use in image interpretation is a hot research topic of remote sensing. Many novel algorithms of OCC were introduced and developed. The maximum entropy model (MaxEnt)-the most promising OCC algorithm as evaluated-is widely used in the OCC study of land use. However, it is unclear about the applicability of these algorithms (including MaxEnt) in multi-class classification (MCC) of land use. Thus, this study established a procedure for MaxEnt-based land-use MCC in remote sensing image interpretation and applied the procedure to the land-use MCC of the Yunyan River basin. The overall classification effect of MaxEnt and the performance of MaxEnt in the prediction of various land were evaluated using overall classification accuracy, Kappa coefficient, sensitivity, and specificity. Moreover, the Kappa coefficient was also used to evaluate the consistency between MaxEnt and random forest (RF), maximum likelihood classification (MLC), and support vector machine (SVM) in the prediction of land use maps. The results are as follows: ① MaxEnt showed the best classification effect, with overall classification accuracy of 84% and a Kappa coefficient of 0.8; ② MaxEnt showed no worst performance in any land type, and even performed the best in some land types; ③ MaxEnt showed high classification consistency with RF and SVM, and the consistency evaluation of the land use maps obtained using the three algorithms yielded Kappa coefficients of greater than 0.6; ④ Compared with the other the three algorithms, MLC yielded a significantly different land use map, with a Kappa coefficient of less than 0.4. This result indicates that MLC is not applicable to the interpretation of land use of the study area. The procedure established in this study only depends on the occurrence probability of land use rather than the threshold selected. As a result, the OCC algorithms represented by MaxEnt have great potential for application to the land-use MCC in remote sensing image interpretation. In addition, the introduction of parallel computing into large-scale land use interpretation will help improve the efficiency of solving MCC problems using MaxEnt.
Dongyang XIONG,Lin ZHANG,Guoqing LI. MaxEnt-based multi-class classification of land use in remote sensing image interpretation[J]. Remote Sensing for Natural Resources,
2023, 35(2): 140-148.
Shu M, Du S H. Forty years’ progress and challenges of remote sensing in national land survey[J]. Journal of Geo-Information Science, 2022, 24(4):597-616.
Shahzad N, Ding X, Abbas S. A comparative assessment of machine learning models for landslide susceptibility mapping in the rugged terrain of northern Pakistan[J]. Applied Sciences, 2022, 12(5):2280-2302.
doi: 10.3390/app12052280
url: https://www.mdpi.com/2076-3417/12/5/2280
[9]
Arabameri A, Asadi N O, Saha S, et al. Novel ensemble approaches of machine learning techniques in modeling the gully erosion susceptibility[J]. Remote Sensing, 2020, 12(11):1890-1918.
doi: 10.3390/rs12111890
url: https://www.mdpi.com/2072-4292/12/11/1890
[10]
Fernández I C, Morales N S. One-class land-cover classification using MaxEnt:The effect of modelling parameterization on classification accuracy[J]. PeerJ, 2019, 7:e7016.
doi: 10.7717/peerj.7016
url: https://peerj.com/articles/7016
Chen Y B, Zheng Z H, Wu Z F, et al. Review and prospect of application of nighttime light remote sensing data[J]. Progress in Geo-graphy, 2019, 38(2):205-223.
Bai Q J, Song Z S, Wang H R, et al. Quantitative analysis of the impact of natural factors and human factors on hydrological system using the SWAT model:The Zhangweinan canal basin case[J]. Journal of Natural Resources, 2018, 33(9):1575-1587.
doi: 10.31497/zrzyxb.20170882
url: http://www.jnr.ac.cn/CN/10.31497/zrzyxb.20170882
Sanchez-Hernandez C, Boyd D S, Foody G M. One-class classification for mapping a specific land-cover class:SVDD classification of Fenland[J]. IEEE Transactions on Geoence and Remote Sensing, 2007, 45(4):1061-1073.
[18]
Phillips S J, Dudík M, Schapire R E. Maxent software for modeling species niches and distributions(Version 3.4.1)[EB/OL]. [2022-08-22]http://-biodiversityinformatics.amnh.org/open_source/maxent/.
url: http://-biodiversityinformatics.amnh.org/open_source/maxent/
Zhou K, Yang Y Q, Zhang Y N, et al. Review of land use classification methods based on optical remote sensing images[J]. Science Technology and Engineering, 2021, 21(32):13603-13613.
Sisodia P S, Tiwari V, Kumar A. Analysis of supervised maximum likelihood classification for remote sensing image[C]// International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014).IEEE, 2014:1-4.
Luo J C, Wang Q M, Ma J H, et al. The EM-based maximum likelihood classifier for remotely sensed data[J]. Acta Geodaetica et Cartographica Sinica, 2002(3):234-239.
Zhang R, Ma J W. State of the art on remotely sensed data classification based on support vector machines[J]. Advances in Earth Science, 2009, 24(5):555-562.
doi: 10.11867/j.issn.1001-8166.2009.05.0555
Li G Q, Huang J H, Liu G, et al. A study of the landscape fragmentations of land cover structure based on Landsat8 remote sensing image:A case study of Mata watershed in Yanan,Shaanxi Province[J]. Remote Sensing for Land and Resources, 2020, 32(3):121-128.doi:10.6046/gtzyyg.2020.03.16.
doi: 10.6046/gtzyyg.2020.03.16
Wu L L, Li X Y, Mao D H, et al. Urban land use classification based on remote sensing and multi-source geographic data[J]. Remote Sensing for Natural Resources, 2022, 34(1):127-134.doi:10.6046/zrzyyg.2021061.
doi: 10.6046/zrzyyg.2021061
Wang Y N, Kong X B, Zhao C J, et al. Change of vegetation coverage in the Loess Plateau from 2000 to 2020 and its spatiotemporal pattern analysis[J]. Journal of Soil and Water Conservation, 2022, 36(3):130-137.
Norallahi M, Kaboli H S. Urban flood hazard mapping using machine learning modelings:GARP,RF,MaxEnt and NB[J]. Natural Hazards, 2021, 106(1):119-137.
doi: 10.1007/s11069-020-04453-3
Guan X F, Zeng Y M. Research progress and trends of parallel processing,analysis,and mining of big spatiotemporal data[J]. Progress in Geography, 2018, 37(10):1314-1327.