Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (1) : 169-178     DOI: 10.6046/zrzyyg.2023278
|
Information extraction of aquaculture ponds in the Jianghan Plain based on Sentinel-2 time-series data
CHEN Zhiyang1(), MAO Dehua2, WANG Zongming2, LIN Nan1, JIA Mingming2, REN Chunying2, WANG Ming2()
1. School of Geomatics and Prospecting Engineering, Jilin Jianzhu University, Changchun 130119, China
2. Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
Download: PDF(9604 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

In recent years, the rapid expansion of the aquaculture pond industry has given rise to a series of ecological and environmental issues. The Jianghan Plain is recognized as one of the most important freshwater aquaculture bases in China, and investigating changes in its aquaculture ponds is crucial for China’s ecological conservation. Focusing on the Jianghan Plain, this study proposed a method for extracting and monitoring changes in aquaculture ponds using Google Earth Engine (GEE) and Sentinel-2 dense time-series images. Using this method, which combined K-means clustering and a hierarchical decision tree classification algorithm, this study achieved accurate information extraction and spatiotemporal pattern analyses of aquaculture ponds in the plain in each year from 2016 to 2022. The results indicate that the combination of K-means and the hierarchical decision tree algorithm that integrated time-varying features allowed for accurate classification of aquaculture ponds, with an overall classification accuracy of 91.90% and a Kappa coefficient exceeding 0.84. In 2022, the aquaculture pond area of Jianghan Plain is 2 126.43 km2. Among these area of aquaculture ponds, 43.24% were concentrated in Jingzhou City, while Yichang City had the fewest area of aquaculture ponds, accounting for only 0.76%. From 2016 to 2022, aquaculture ponds in the Jianghan Plain exhibited an upward trend overall and dynamics with pronounced spatial heterogeneity. Specifically, the total area increased to 2 126.43 km2 from 1 947.43 km2, increasing by 9.19%. The proposed methodology provides an important reference for the precise monitoring of aquaculture ponds, and the resulting dataset serves as a valuable reference and holds great practical significance for the ecological conservation and the assessment of sustainable development goals in the Jianghan Plain.

Keywords Jianghan Plain      inland aquaculture pond      K-means      time series data      Google Earth Engine     
ZTFLH:  TP79  
Issue Date: 17 February 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhiyang CHEN
Dehua MAO
Zongming WANG
Nan LIN
Mingming JIA
Chunying REN
Ming WANG
Cite this article:   
Zhiyang CHEN,Dehua MAO,Zongming WANG, et al. Information extraction of aquaculture ponds in the Jianghan Plain based on Sentinel-2 time-series data[J]. Remote Sensing for Natural Resources, 2025, 37(1): 169-178.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023278     OR     https://www.gtzyyg.com/EN/Y2025/V37/I1/169
Fig.1  General information of study area
年份 可用影像数/景 年份 可用影像数/景
2016年 275 2020年 473
2017年 299 2021年 553
2018年 477 2022年 486
2019年 495
Tab.1  Available Sentinel-2 image numbers for the study area from 2016 to 2022
名称 描述 影像图 实地照片示例
养殖池 用于水产养殖的多边形水体,形状规则,靠近河流
湖泊 内陆地区有积水的自然多边形水体
河流 在内陆地区有流动水的自然线性水体
水库/
坑塘
有积水的人工多边形水体,一般有明显的水坝
水田 能种植水稻、冬季蓄水或浸湿状的农田
Tab.2  Water body classification system in the study area
年份 养殖池样
本数量/个
非养殖池
样本数量/个
2016年 451 549
2017年 463 537
2018年 455 545
2019年 459 541
2020年 466 534
2021年 432 538
2022年 461 539
Tab.3  Number of samples constructed in this study from 2016 to 2022
Fig.2  Technical flowchart
Fig.3  Segmentation results of aquaculture ponds with different initial cluster numbers
Fig.4  NDWI and landscape change in aquaculture ponds and paddy fields for each month in a year
名称 介绍 公式
LSI 描述物体形状的曲率 0.25 · P / A
紧凑度(C) 描述物体形状的曲率和紧凑度 A / a   , a = P 2/4π
矩形度(R) 反映一个对象填充其外部矩形的程度 A / A m b r
Tab.4  Descriptions and formulas for the three shape metrics used in this study
Fig.5  Classification model of hierarchical decision tree
Fig.6  Characterization of the shape of aquaculture ponds in relation to other water bodies
年份 类别 养殖池 非养
殖池
Kappa
系数
UA/% PA/% OA/%
2016年 养殖池
非养殖池
402
49
52
497
0.84 93.37 90.20 91.90
2017年 养殖池
非养殖池
426
37
39
498
0.87 94.11 92.60 93.40
2018年 养殖池
非养殖池
410
45
41
504
0.85 93.62 91.00 92.40
2019年 养殖池
非养殖池
418
41
55
486
0.85 92.91 91.80 92.40
2020年 养殖池
非养殖池
432
34
47
487
0.88 94.52 93.20 93.90
2021年 养殖池
非养殖池
424
38
38
500
0.86 93.90 92.40 93.20
2022年 养殖池
非养殖池
422
39
41
498
0.88 95.25 92.20 93.80
Tab.5  Confusion matrix and classification accuracy analysis
Fig.7  Comparison between the results of this study and corresponding results manually delineated from Google Earth images
Fig.8  Distribution and areal statistics of aquaculture ponds in study area in 2022
Fig.9  Spatial distributions and areal changes of aquaculture ponds in study area from 2016 to 2022
地区 2016年 2018年 2020年 2022年
天门市图9(a)中a地块
仙桃市图9(a)中b地块
荆州市图9(a)中c地块
荆门市图9(a)中d地块
Tab.6  Spatial changes in four typical aquaculture ponds in the Jianghan Plain from 2016 to 2022
提取结果 仙桃市 荆州市 孝感市 图例
样本范围
本文结果
ESA_
Worldcover
FROM-
GLC10
Dynamic
World
Tab.7  Comparison of aquaculture ponds between datasets in this study and three global 10-m resolution land cover datasets
[1] Ren C, Wang Z, Zhang Y, et al. Rapid expansion of coastal aquaculture ponds in China from Landsat observations during 1984—2016[J]. International Journal of Applied Earth Observation and Geoinformation, 2019,82:101902.
[2] Sun Z, Luo J H, Yang J Z C, et al. Dynamics of coastal aquaculture ponds in Vietnam from 1990 to 2015 using Landsat data[J]. IOP Conference Series:Earth and Environmental Science, 2020,502:012029.
[3] Duan Y, Li X, Zhang L, et al. Mapping national-scale aquaculture ponds based on the Google Earth Engine in the Chinese coastal zone[J]. Aquaculture, 2020,520:734666.
[4] Ottinger M, Bachofer F, Huth J, et al. Mapping aquaculture ponds for the coastal zone of Asia with sentinel-1 and sentinel-2 time series[J]. Remote Sensing, 2021, 14(1):153.
[5] Duan Y, Li X, Zhang L, et al. Detecting spatiotemporal changes of large-scale aquaculture ponds regions over 1988—2018 in Jiangsu Province,China using Google Earth Engine[J]. Ocean & Coastal Management,2020,188:105144.
[6] Duan Y, Tian B, Li X, et al. Tracking changes in aquaculture ponds on the China coast using 30 years of Landsat images[J]. International Journal of Applied Earth Observation and Geoinformation, 2021,102:102383.
[7] Li A, Song K, Chen S, et al. Mapping African wetlands for 2020 using multiple spectral,geo-ecological features and Google Earth Engine[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022,193:252-268.
[8] Ottinger M, Clauss K, Kuenzer C. Opportunities and challenges for the estimation of aquaculture production based on earth observation data[J]. Remote Sensing, 2018, 10(7):1076.
[9] Sun Z, Luo J, Yang J, et al. Nation-scale mapping of coastal aquaculture ponds with sentinel-1 SAR data using google earth engine[J]. Remote Sensing, 2020, 12(18):3086.
[10] 万敏, 刘梦馨, 黄婧, 等. 城市八景中的生态智慧考析——以江汉平原为例[J]. 中国园林, 2022, 38(7):18-25.
[10] Wan M, Liu M X, Huang J, et al. The research and analysis of ecological wisdom in urban eight scenes:Taking Jianghan Plain as an example[J]. Chinese Landscape Architecture, 2022, 38(7):18-25.
[11] Tassi A, Vizzari M. Object-oriented LULC classification in Google Earth Engine combining SNIC,GLCM,and machine learning algorithms[J]. Remote Sensing, 2020, 12(22):3776.
[12] Tucker C J. Monitoring the grasslands of the sahel 1984—1985[J]. Remote Sensing of Environment, 1979,8:127-150.
[13] Gao B C. NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996, 58(3):257-266.
[14] Zhu Z, Wang S, Woodcock C E. Improvement and expansion of the Fmask algorithm:Cloud,cloud shadow,and snow detection for Landsats 4—7,8,and Sentinel 2 images[J]. Remote Sensing of Environment, 2015,159:269-277.
[15] Xu H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery[J]. International Journal of Remote Sensing, 2006, 27(14):3025-3033.
[16] Zha Y, Gao J, Ni S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery[J]. International Journal of Remote Sensing, 2003, 24(3):583-594.
[17] 汪恩良, 徐雷, 韩红卫, 等. 基于OTSU算法提取寒区河流流冰密度研究[J]. 应用基础与工程科学学报, 2021, 29(6):1429-1439.
[17] Wang E L, Xu L, Han H W, et al. Extracting river ice concentration in cold regions based on the OTSU algorithm[J]. Journal of Basic Science and Engineering, 2021, 29(6):1429-1439.
[18] Wang M, Mao D, Xiao X, et al. Interannual changes of coastal aquaculture ponds in China at 10-m spatial resolution during 2016—2021[J]. Remote Sensing of Environment, 2023,284:113347.
[19] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems,Man,and Cybernetics, 1979, 9(1):62-66.
[20] Kolli M K, Opp C, Karthe D, et al. Automatic extraction of large-scale aquaculture encroachment areas using Canny Edge Otsu algorithm in Google Earth Engine:The case study of Kolleru Lake,South India[J]. Geocarto International, 2022, 37(26):11173-11189.
[21] Vickers N J. Animal communication:When I’m calling you,will you answer too?[J]. Current Biology, 2017, 27(14):R713-R715.
[22] Hartigan J A, Wong M A. Algorithm AS 136:A K-means clustering algorithm[J]. Applied Statistics, 1979, 28(1):100.
[23] 林丹. 基于小波变换的K-means算法在遥感图像分类中的应用研究[D]. 邯郸: 河北工程大学, 2015.
[23] Lin D. Research on TM classification based on K-means of wavelet transform[D]. Handan: Hebei University of Engineering, 2015.
[24] 贾凯, 陈水森, 蒋卫国. 粤港澳大湾区红树林长时间序列遥感监测[J]. 遥感学报, 2022, 26(6):1096-1111.
[24] Jia K, Chen S S, Jiang W G. Long time-series remote sensing monitoring of mangrove forests in the Guangdong-Hong Kong-Macao Greater Bay Area[J]. National Remote Sensing Bulletin, 2022, 26(6):1096-1111.
[1] CHEN Yuanyuan, YAN Shuoting, YAN Jin, ZHENG Siqi, WANG Hao, ZHU Jie. Forest disturbance monitoring in Lishui City, China based on Landsat time series images and the LandTrendr algorithm[J]. Remote Sensing for Natural Resources, 2025, 37(1): 179-187.
[2] WEI Xin, REN Yu, CHEN Xidong, HU Qingfeng, LIU Hui, ZHOU Jing, SONG Dongwei, ZHANG Peipei, HUANG Zhiquan. Monitoring of dynamic changes in water bodies of Henan Province based on time-series Sentinel-2 data[J]. Remote Sensing for Natural Resources, 2024, 36(2): 268-278.
[3] XUE Zhiyong, TIAN Zhen, ZHU Jianhua, ZHAO Yang. Monitoring of inter-annual variations in mangrove forests in the Bamen Bay area based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2024, 36(2): 279-286.
[4] FENG Qian, ZHANG Jiahua, DENG Fan, WU Zhenjiang, ZHAO Enling, ZHENG Peixin, HAN Yang. A mapping methodology for wetland categories of the Yellow River Delta based on optimal feature selection and spatio-temporal fusion algorithm[J]. Remote Sensing for Natural Resources, 2024, 36(2): 39-49.
[5] SONG Yingxu, ZOU Yujia, YE Runqing, HE Zhixia, WANG Ningtao. Dynamic analysis of landslide hazards in the Three Gorges Reservoir area based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2024, 36(1): 154-161.
[6] LI Guangzhe, WANG Hao, CAO Yinxuan, ZHANG Xiaoyu, NING Xiaogang. Spatio-temporal evolution and influencing factors of ecological environment quality in the Changsha-Zhuzhou-Xiangtan urban agglomeration[J]. Remote Sensing for Natural Resources, 2023, 35(4): 244-254.
[7] CHEN Jian, LI Hu, LIU Yufeng, CHANG Zhu, HAN Weijie, LIU Saisai. Crops identification based on Sentinel-2 data with multi-feature optimization[J]. Remote Sensing for Natural Resources, 2023, 35(4): 292-300.
[8] YU Sen, JIA Mingming, CHEN Gao, LU Yingying, LI Yi, ZHANG Bochun, LU Chunyan, LI Huiying. A study of the disturbance to mangrove forests in Dongzhaigang, Hainan based on LandTrendr[J]. Remote Sensing for Natural Resources, 2023, 35(2): 42-49.
[9] ZHU Lin, HUANG Yuling, YANG Gang, SUN Weiwei, CHEN Chao, HUANG Ke. Information extraction and spatio-temporal evolution analysis of the coastline in Hangzhou Bay based on Google Earth Engine and remote sensing technology[J]. Remote Sensing for Natural Resources, 2023, 35(2): 50-60.
[10] CHEN Huixin, CHEN Chao, ZHANG Zili, WANG Liyan, LIANG Jintao. A remote sensing information extraction method for intertidal zones based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(4): 60-67.
[11] LI Yi, CHENG Lina, LU Yingying, ZHANG Bochun, YU Sen, JIA Mingming. A study on the changes in coastal tidal flats in the Laizhou Bay based on MSIC and OTSU[J]. Remote Sensing for Natural Resources, 2022, 34(4): 68-75.
[12] LUO Hongjian, MING Dongping, XU Lu. Time series calculation of remote sensing ecological index based on GEE[J]. Remote Sensing for Natural Resources, 2022, 34(2): 271-277.
[13] ZHU Qi, GUO Huadong, ZHANG Lu, LIANG Dong, LIU Xuting, WAN Xiangxing. Classification of tropical natural forests in Hainan Island based on multi-temporal Landsat8 remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2): 215-223.
[14] FANG Mengyang, LIU Xiaohuang, KONG Fanquan, LI Mingzhe, PEI Xiaolong. A method for creating annual land cover data based on Google Earth Engine: A case study of the Yellow River basin[J]. Remote Sensing for Natural Resources, 2022, 34(1): 135-141.
[15] ZHENG Xiucheng, ZHOU Bin, LEI Hui, HUANG Qiyu, YE Haolin. Extraction and spatio-temporal change analysis of the tidal flat in Cixi section of Hangzhou Bay based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2022, 34(1): 18-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech