Please wait a minute...
 
Remote Sensing for Natural Resources    2022, Vol. 34 Issue (4) : 166-174     DOI: 10.6046/zrzyyg.2021382
|
Assessment of the comprehensive disaster risk in rural areas based on multi-model comparison: A case study of Huayuan County, Hunan Province
ZOU Fang1,2(), MA Yunfei1, HU Yingling1
1. Department of Urban and Rural Planning, Changsha University of Science and Technology, Changsha 410001, China
2. Rural Security Institute, Changsha University of Science and Technology, Changsha 410001, China
Download: PDF(3780 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Frequent disasters continue to plague many rural areas, and the precise identification of the comprehensive disaster risk in rural areas is critical to disaster prevention and mitigation. With 232 villages in Huayuan County, Hunan Province as a case study, this study defined the comprehensive disaster risk index (CDSI) and constructed an assessment system reflecting the dynamics of disaster-inducing environment based on the three elements of risk formation stated in the regional disaster system theory. Then, this study investigated the comprehensive disaster risk in rural areas by comparing four models, namely the analytic hierarchy process - technique for order preference by similarity to ideal solution (AHP-TOPSIS), the entropy- TOPSIS, AHP, and the entropy weight method. The conclusions are as follows. The multi-model evaluation results show a positive correlation, with a CDSI ratio of 1:0.877:0.740:0.539. The entropy-TOPSIS model is the optimal model for the assessment of comprehensive disaster risk in the study area. The CDSI of the study area has a Moran’s I value of 0.74, a strong spatial autocorrelation, and spatial distribution characteristics of being high in the west, low in the east, and significant locally. This study deepens the assessment of comprehensive disaster risk in rural areas. It will provide practical experience and a theoretical basis for scientifically guiding rural disaster prevention and mitigation and ensuring the safe implementation of the rural revitalization strategy.

Keywords comprehensive disaster risk      rural area safty      entropy-TOPSIS      disaster prevention and reduction     
ZTFLH:  TP79  
  TU984  
Issue Date: 27 December 2022
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Fang ZOU
Yunfei MA
Yingling HU
Cite this article:   
Fang ZOU,Yunfei MA,Yingling HU. Assessment of the comprehensive disaster risk in rural areas based on multi-model comparison: A case study of Huayuan County, Hunan Province[J]. Remote Sensing for Natural Resources, 2022, 34(4): 166-174.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2021382     OR     https://www.gtzyyg.com/EN/Y2022/V34/I4/166
Fig.1  Framework of evaluation principle for rural comprehensive disaster
Fig.2  Technical flow chart
准则层 一级指标层 二级指标层 正向化 指标解释及单位
A
致灾
因子
A1
自然灾害
A11极端气象灾害
(风雹、干旱、低温冷冻)
A12洪涝灾害
A13地质灾害
极大

极大
极大
反映极端气象灾害频率与分布(历年总和/次)

反映洪涝灾害频率与分布(历年总和/次)
反映地质灾害频率与分布(历年总和/次)
A2
人为灾害
A21尾矿库面积
A22火灾
A23空气质量指数
极大
极大
极大
反映矿污染可能性(实际值/m2)
反映火灾灾害频率与分布(历年总和/次)
反映空气污染状况(实际值/(μg·m-3))
B
孕灾
环境
B1
社会环境
B11户籍人口数
B12户均纯收入
B13流动人口数
B14土地利用
极大
极大
极大
极大
反映户籍人口变化数量(差值/人)
反映乡村居民经济水平(差值/(元/人))
反映乡村人口流失压力(差值/人)
反映建设用地开发强度(面积差值/m2)
B2
自然环境
B21坡度
B22土壤类型
B23降雨
B24 NDVI
B25水文
B26温度
B27风速
极大
极大
极大
极大
极大
极大
极大
反映地形地貌特征(差值/(°))
反映地基承灾力大小(分类打分差值/分)
反映洪涝干旱灾害发生可能性(差值/mm)
反映植被覆盖度变化(差值)
反映水域面积变化(水体面积差值/m2)
反映气象灾害发生可能性(差值/℃)
反映年平均风速变化(差值/(m·s-1))
B3
防灾能力
B31防灾能力
B32工业产值
B33农业产值
B34工业企业
极小
极小
极小
极小
反映防灾职能体系、检测预警方式、安全防治与实施情况(打分差值/分)
反映工业产业经济水平(差值/元)
反映农业产业经济水平(差值/元)
反映工业企业发展水平(差值/个)
B4
抗灾能力
B41生命线长度
B42医疗机构在职人数
B43消防设施数
B44潜在应急疏散场地数
B45应急疏散通道长度
极小
极小
极小
极小
极小
反映市政管线输送能力(差值/m)
反映主体应对风险的技术水平(差值/人)
反映消防抗灾能力(差值/个)
反映多级应急疏散能力(差值/个)
反映应急疏散能力(差值/m)
C
承灾体
C1
生命财产
C11老龄化人口数
C12就业人口数
极大
极大
反映脆弱人群数量(实际值/人)
反映乡村生产主体的数量(实际值/人)
C2
固定资产
C21交通用地面积
C22房屋建筑面积
C23耕地面积
C24基本农田面积
极大
极大
极大
极大

反映基础设施状况(实际值/m2)
反映居民住房财产情况(实际值/m2)
反映土地生产状况(实际值/m2)
反映保障耕地数量的政策程度(实际值/m2)
Tab.1  Evaluation index system of rural comprehensive disaster
模型 熵权-
TOPSIS
AHP AHP-
TOPSIS
熵权法
熵权-TOPSIS 1 0.751** 0.733** 0.890**
AHP 0.75 1 * * 1 0.972** 0.664**
AHP-TOPSIS 0.733** 0.972** 1 0.559**
熵权法 0.890** 0.664** 0.559** 1
Tab.2  Correlation analysis of results of four models
Fig.3  Results of multi-model comparison (partial)
Fig.4  Results of multi-model operation
Fig.5  Rural comprehensive disaster riskgrading in Huayuan County
Fig.6  Spatial autocorrelation analysis of rural comprehensive disaster risk index in Huayuan County
Fig.7  Assessment results of comprehensive disaster risk factors in Huayuan County
[1] Zhan Q M, Zou F, Zhang W S, et al. Research and practice on disaster prevention planning in villages based on planning support system[J]. International Review for Spatial Planning and Sustainable Development, 2018, 6(4):110-127.
[2] Zou F, Zhan Q M, Zhang W S. Quantifying the impact of human activities on geological hazards in mountainous areas:Evidence from Shennongjia,China[J]. Natural Hazards, 2018, 90(1):137-155.
doi: 10.1007/s11069-017-3039-4 url: http://link.springer.com/10.1007/s11069-017-3039-4
[3] 铁永波, 唐川. 城市灾害应急能力评价指标体系建构[J]. 城市问题, 2005, 128(6):76-79.
[3] Tie Y B, Tang C. Establish the evaluation system of urban disaster emergency response capability[J]. Urban Problems, 2005, 128(6):76-79.
[4] 吴越, 吴纯. 基于城乡统筹的公共安全规划研究——以长株潭城市群为例[J]. 中国安全科学学报, 2009, 19(3):62-66.
[4] Wu Y, Wu C. Study on the public safaty planning based on the overall planning of town and country:With the urban agglomeration of Changsha,Zhuzhou and Xiangtan City as an expample[J]. China Safety Science Journal, 2009, 19(3):62-66.
[5] 马云飞, 邹芳, 徐海燕. 基于地质灾害风险评价的衡东县国土空间管制研究[J]. 地理信息世界, 2020, 27(6):14-20.
[5] Ma Y F, Zou F, Xu H Y. Land space control of Hengdong County based on geological hazard risk assessment[J]. Geomatics World, 2020, 27(6):14-20.
[6] 詹庆明, 张维思, 邹芳, 等. 基于GIS的神农架林区崩滑流灾害风险评价研究[J]. 地理信息世界, 2016, 23(5):1-9.
[6] Zang Q M, Zhang W S, Zou F, et al. Risk assessment of collapses,landslides and debris flows in Shennongjia forest area based on GIS[J]. Geomatics World, 2016, 23(5):1-9.
[7] 孙绍骋. 灾害评估研究内容与方法探讨[J]. 地理科学进展, 2001, 20(2):122-130.
[7] Sun S C. A study on the contents and methods of disaster assessment[J]. Progress of Geographical Sciences, 2001, 20(2):122-130.
[8] 张强, 李文举, 姚玉璧, 等. 中国南方干旱灾害风险特征及其防控对策[J]. 生态学报, 2017, 37(21):7206-7218.
[8] Zhang Q, Li W J, Yao Y B, et al. Risk characteristics and control technology measures of drought disaster in southern China[J]. Acta Ecologica Sinica, 2017, 37(21):7206-7218.
[9] 陈亚宁, 杨思全. 自然灾害的灰色关联灾情评估模型及应用研究[J]. 地理科学进展, 1999, 18(2):64-68.
[9] Chen Y N, Yang S Q. The application and model of grey assocation for evaluation of natural disaster[J]. Progress of Geographical Sciences, 1999, 18(2):64-68.
[10] Alberti M. Urban form and ecosystem dynamics:Empirical evidence and practical implications[M] // WilliamsE, BurtonM. Achieving Sustainable Urban Form. London: E and FN Spon, 2000:84-96.
[11] Resilience Alliance. Urban resilience research prospectus[M]. Australia:CSIRO, 2008.
[12] 史培军. 灾害研究的理论与实践[J]. 南京大学学报(自然科学版), 1991(11): 37-42.
[12] Shi P J. Theory on disaster science and disaster dynamics[J]. Journal of Nanjing University(Natural Sciences), 1991(11): 37-42.
[13] 黄崇福, 史培军. 城市自然灾害风险评价的二级模型[J]. 自然灾害学报, 1994, 3(2):22-27.
[13] Huang C F, Shi P J. Two level medel of risk evaluation on city natural[J]. Journal of Natural Disasters, 1994, 3(2):22-27.
[14] 黄崇福, 史培军, 张远明. 城市自然灾害风险评价的一级模型[J]. 自然灾害学报, 1994, 3(1):3-8.
[14] Huang C F, Shi P J, Zhang Y M. One level medel of risk evaluation on city natural disaster[J]. Journal of Natural Disasters, 1994, 3(1):3-8.
[15] 谢全敏. 滑坡灾害风险评价及其治理决策方法研究[J]. 岩石力学与工程学报, 2004, 23(24):4260.
[15] Xie Q M. Study on the rise evaluation and treatment decision:Making methods of landslide hazard[J]. Journal of Rock Mechanics and Engineering, 2004, 23(24):4260.
[16] 杜鹃, 何飞, 史培军. 湘江流域洪水灾害综合风险评价[J]. 自然灾害学报, 2006, 15(6):38-44.
[16] Du J, He F, Shi P J. Integrated flood risk assessment of Xiangjiang River basin in China[J]. Journal of Natural Disasters, 2006, 15(6):38-44.
[17] 王春乙, 蔡菁菁, 张继权. 基于自然灾害风险理论的东北地区玉米干旱、冷害风险评价[J]. 农业工程学报, 2015, 31(6):238-245.
[17] Wang C Y, Cai J J, Zhang J Q. Risk assessment of drought and chilling injury of maize in northeast China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(6):238-245.
[18] 王成, 樊荣荣, 龙卓奇. 重庆市乡村生产空间系统风险评价及其空间分异格局[J]. 自然资源学报, 2020, 35(5):1119-1131.
[18] Wang C, Fan R R, Long Z Q. Risk assessment and spatial differentiation pattern of rural production space system in Chongqing Municipality[J]. Journal of Natural Resources, 2020, 35(5):1119-1131.
doi: 10.31497/zrzyxb.20200509 url: http://www.jnr.ac.cn/EN/10.31497/zrzyxb.20200509
[19] 史培军. 三论灾害研究的理论与实践[J]. 自然灾害学报, 2002, 11(3):1-9.
[19] Shi P J. Theory and practice of disaster[J]. Journal of Natural Disasters, 2002, 11(3):1-9.
[20] 于文金, 黄亦露, 邵明阳. 澜沧江流域极端天气灾害特征及波动趋势[J]. 生态学报, 2015, 35(5):1378-1387.
[20] Yu W J, Huang Y L, Shao M Y. Research on characteristics of extreme weather disasters and fluctuations trend on Lancang River basin[J]. Acta Ecologica Sinica, 2015, 35(5):1378-1387.
[21] 方佳毅, 史培军. 全球气候变化背景下海岸洪水灾害风险评估研究进展与展望[J]. 地理科学进展, 2019, 38(5):3-14.
[21] Fang J Y, Shi P J. A review of coastal flood risk research under global climate change[J]. Progress of Geographical Sciences, 2019, 38(5):3-14.
[22] 杨娟, 王龙, 徐刚. 重庆市综合灾害风险模糊综合评价[J]. 地球与环境, 2014, 42(2):252-259.
[22] Yang J, Wang L, Xu G. Fuzzy comprehensive evaluation of integrated disaster risk in Chongqing[J]. Earth and Environment, 2014, 42(2):252-259.
[23] 王龙, 徐刚, 杨娟. 山地城市灾害系统模糊风险评价[J]. 地球与环境, 2015, 43(3):57-65.
[23] Wang L, Xu G, Yang J. Fuzzy risk assessment of mountainous urban disaster system[J]. Earth and Environment, 2015, 43(3):57-65.
[24] 王树声. 基于专家打分法和GIS相结合的城市灾害综合风险评价——以南方某县城为例[C]// 城乡治理与规划改革——2014中国城市规划年会论文集,海口, 2014:10.
[24] Wang S S. Comprehensive risk assessment of urban disasters based on expert scoring method and GIS:Take a county in the south as an example[C]// China Urban Planning Annual Conference 2014,Hai Kou, 2014:10.
[25] 王望珍, 张可欣, 陈瑶. 基于GIS的神农架林区多灾种耦合综合风险评估[J]. 湖北农业科学, 2018, 57(5):49-54,110.
[25] Wang W Z, Zhang K X, Chen Y. Comprehensive risk assessment of multi-hazard coupling in Shennongjia forest region based on GIS[J]. Hubei Agricultural Sciences, 2018, 57(5):49-54,110.
[26] 陈报章, 仲崇庆. 自然灾害风险损失等级评估的初步研究[J]. 灾害学, 2010, 25(3):1-5.
[26] Chen B Z, Zhong C Q. A preliminary study on risk loss degree assessment of natural hazards[J]. Journal of Catastrophology, 2010, 25(3):1-5.
[27] 雷永登, 史秦青, 王静爱, 等. 基于综合定权法的中国玉米综合灾害风险评价[J]. 北京师范大学学报(自然科学版), 2011, 47(5):522-527.
[27] Lei Y D, Shi Q Q, Wang J A, et al. Integrated risk assessment of Chinese core based on intergrated indices-weighing method[J]. Journal of Beijing Normal University(Natural Sciences), 2011, 47(5):522-527.
[28] 代文倩, 初建宇, 马丹祥. 基于云模型的城市灾害综合风险评价方法[J]. 华北理工大学学报(自然科学版), 2019, 41(1):73-80.
[28] Dai W Q, Chu J Y, Ma D X. Urban disaster comprehensive risk assessment method based on cloud model[J]. Journal of North China University of Science and Technology(Natural Science Edition), 2019, 41(1):73-80.
[29] 史培军. 再论灾害研究的理论与实践[J]. 自然灾害学报, 1996, 5(4):8-19.
[29] Shi P J. Theory and practice of disaster[J]. Journal of Natural Disasters, 1996, 5(4):8-19.
[30] 程启月. 评测指标权重确定的结构熵权法[J]. 系统工程理论与实践, 2010, 30(7): 1225-1228.
doi: 10.12011/1000-6788(2010)7-1225
[30] Cheng Q Y. Structure entropy weight method to confirm the weight of evaluating index[J]. Systems Engineering:Theory and Practice, 2010, 30(7): 1225-1228.
[31] 邓雪, 李家铭, 曾浩健, 等. 层次分析法权重计算方法分析及其应用研究[J]. 数学的实践与认识, 2012, 42(7):24-27.
[31] Deng X, Li J M, Zeng H J, et al. Research on computation methods of AHP wight vector and its applications[J]. Mathematics in Practice and Theory, 2012, 42(7):24-27.
[32] 李灿, 张凤荣, 朱泰峰, 等. 基于熵权TOPSIS模型的土地利用绩效评价及关联分析[J]. 农业工程学报, 2013, 29(5):217-227.
[32] Li C, Zhang F R, Zhu T F, et al. Evaluation and correlation analysis of land use performance based on entropy-weight TOPSIS method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(5):217-227.
[1] WANG Liying, MA Xuwei, YOU Ze, WANG Shichao, CAMARA Mahamadou. Spatial-spectral joint classification of airborne multispectral LiDAR point clouds based on the multivariate GMM[J]. Remote Sensing for Natural Resources, 2023, 35(3): 88-96.
[2] FENG Xiaogang, ZHAO Yi, LI Meng, ZHOU Zaihui, LI Fengxia, WANG Yuan, YANG Yongquan. Influence of urban rivers and their surrounding land on the surface thermal environment[J]. Remote Sensing for Natural Resources, 2023, 35(3): 264-273.
[3] WU Weichao, YE Fawang. Cloud detection of Sentinel-2 images for multiple backgrounds[J]. Remote Sensing for Natural Resources, 2023, 35(3): 124-133.
[4] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[5] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[6] GAO Chen, MA Dong, QU Man, QIAN Jianguo, YIN Haiquan, HOU Xiaozhen. Exploring the anomaly mechanism of borehole strain at the Huailai seismic station based on PS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 153-159.
[7] XI Lei, SHU Qingtai, SUN Yang, HUANG Jinjun, SONG Hanyue. Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China[J]. Remote Sensing for Natural Resources, 2023, 35(3): 160-169.
[8] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[9] CHEN Haoyu, XIANG Lei, GAO He, MU Jinyi, SUO Xiaojing, HUA Bowei. Hyperspectral inversion of total nitrogen content in soils based on fractional order differential[J]. Remote Sensing for Natural Resources, 2023, 35(3): 170-178.
[10] HU Chenxia, ZOU Bin, LIANG Yu, HE Chencheng, LIN Zhijia. Spatio-temporal evolution of gross ecosystem product with high spatial resolution: A case study of Hunan Province during 2000—2020[J]. Remote Sensing for Natural Resources, 2023, 35(3): 179-189.
[11] YANG Yujin, YANG Fan, XU Zhenni, LI Zhu. Analysis and optimization of the spatio-temporal coordination between the ecological services and economic development in the Dongting Lake area[J]. Remote Sensing for Natural Resources, 2023, 35(3): 190-200.
[12] PARIHA Helili, ZAN Mei. Spatio-temporal changes and influencing factors of ecological environments in oasis cities of arid regions[J]. Remote Sensing for Natural Resources, 2023, 35(3): 201-211.
[13] WANG Yelan, YANG Xin, HAO Lina. Spatio-temporal changes in the normalized difference vegetation index of vegetation in the western Sichuan Plateau during 2001—2021 and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(3): 212-220.
[14] LOU Yanhan, LIAO Jingjuan, CHEN Jiaming. Monitoring water level changes in the middle and lower reaches of the Yangtze River using Sentinel-3A satellite altimetry data[J]. Remote Sensing for Natural Resources, 2023, 35(3): 221-229.
[15] ZHOU Shisong, TANG Yuqi, CHENG Yuxiang, ZOU Bin, FENG Huihui. Spatial heterogeneity of the correlation between water quality and land use in the Chenjiang River basin, Chenzhou City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 230-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech