Please wait a minute...
 
Remote Sensing for Natural Resources    2025, Vol. 37 Issue (3) : 54-64     DOI: 10.6046/zrzyyg.2024038
|
Exploring the ecological effects of land use changes in mining areas under different mining modes based on the Google Earth Engine
LIN Xinyuan1(), CHENG Yangjian1, XIE Wei2, LI Chuanqing3, NIE Wen2()
1. School of Advanced Manufacturing, Fuzhou University, Jinjiang 362200, China
2. Sinosteel Ma’anshan General Institute of Mining Research Co., Ltd., Ma’anshan 243000, China
3. School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
Download: PDF(6971 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

To investigate the ecological and environment effects of land-use changes under different mining modes, this study utilized the Google Earth Engine (GEE) cloud computing platform to construct a remote sensing ecological index (RSEI) by integrating the greenness, heat, dryness, and wetness indicators. The RSEI was utilized to assess the ecological quality of two mining areas with different mining modes: the Guqiao Coal Mine in Huainan City (underground mining) and the Nanshan Iron Mine in Ma’anshan City (open-pit mining). Through a comparative analysis of relevant data from 2000 to 2020, this study analyzed the dynamic evolutionary patterns between land use changes and ecological quality in the two mining areas. The results indicate that cultivated land occupied the largest proportion in both mining areas. The underground mining area was characterized by a significantly expanded water area, whereas the open-pit mining area featured reduced cultivated and forest lands and increased construction land. Both mining areas exhibited overall good-to-fair ecological quality. Specifically, the RSEI values for the Guqiao Coal Mine were 0.60, 0.82, 0.71, 0.65, and 0.68, while those for the Nanshan Iron Mine were 0.58, 0.59, 0.59, 0.63, and 0.64. Among various land use types, construction land and water bodies displayed relatively poor ecological conditions, whereas forest and cultivated lands exhibited more favorable conditions. The underground mining area showed surface subsidence and the transition of cultivated land to water areas, leading to deteriorating ecological quality. In contrast, the open-pit mining area showed soil stripping, shrinking forest and cultivated lands, and construction land expansion, contributing significantly to the declining ecological quality.

Keywords underground mining      open-pit mining      Google Earth Engine (GEE)      land use change      remote sensing ecological index (RSEI)     
ZTFLH:  TP79  
Issue Date: 01 July 2025
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Xinyuan LIN
Yangjian CHENG
Wei XIE
Chuanqing LI
Wen NIE
Cite this article:   
Xinyuan LIN,Yangjian CHENG,Wei XIE, et al. Exploring the ecological effects of land use changes in mining areas under different mining modes based on the Google Earth Engine[J]. Remote Sensing for Natural Resources, 2025, 37(3): 54-64.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2024038     OR     https://www.gtzyyg.com/EN/Y2025/V37/I3/54
Fig.1  Location of the study area
Fig.2  Research method flow chart
分类特征 特征信息 波段信息
光谱特征 Landsat5 TM Bblue,Bgreen,Bred,BNIR,BSWIR1,BSWIR2
Landsat8 OLI/TIRS Bblue,Bgreen,Bred,BNIR,BSWIR1,BSWIR2
光谱指数 NDVI[8],NDBI[14],MNDWI[14]
地形特征 SRTM DEM 高度、坡度
Tab.1  Multidimensinal classification feature data set
指数 计算公式 解释
NDVI ( B N I R - B r e d ) / ( B N I R + B r e d ) 式中:BNIR,Bred,Bblue,Bgreen,BSWIR1,BSWIR2 分别为近红外、红光、蓝光、绿光、短波红外1和2波段的反射率[16-17];SI[18]IBI[19]分别为裸土指数和建筑指数;λ为TIR波段的中心波长;T为传感器探测到的亮温温度; ε为地表比辐射率;ρ = 1.438 × 10-2 m·K。
WET W E T T M = 0.0315 B b l u e + 0.2021 B g r e e n + 0.3102 B r e d + 0.1594 B N I R - 0.6806 B S W I R 1 - 0.6109 B S W I R 2 W E T O L I = 0.1511 B b l u e + 0.1973 B g r e e n + 0.3283 B r e d + 0.3407 B N I R - 0.7117 B S W I R 1 - 0.4559 B S W I R 2
NDBSI ( S I + I B I ) / 2
LST T / [ 1 + ( λ T / ρ ) l n ε ] - 273.15
Tab.2  Calculation formula of remote sensing index
特征变量 顾桥煤矿 南山铁矿
2000年 2005年 2010年 2015年 2020年 2000年 2005年 2010年 2015年 2020年
Bblue 4.62 4.81 6.73 5.93 5.82 6.22 6.20 2.64 5.47 4.67
Bgreen 7.44 7.21 4.74 5.21 5.12 6.40 6.72 5.32 6.43 4.12
Bred 5.47 6.65 3.82 5.49 9.88 6.00 6.36 2.49 4.14 4.48
BNIR 4.80 9.20 8.55 14.68 14.25 2.65 2.36 5.33 3.52 3.88
BSWIR1 3.12 4.09 7.05 5.40 10.18 3.54 1.79 2.37 2.78 5.43
BSWIR2 8.46 10.61 8.70 7.49 11.46 8.05 1.46 5.14 5.39 5.32
NDVI 3.68 6.35 6.73 1.70 6.11 3.28 1.58 5.29 1.08 3.39
NDBI 6.01 6.46 8.21 5.37 8.69 5.58 5.46 5.34 6.44 4.86
MNDWI 6.32 3.62 8.20 6.56 7.67 2.88 6.99 2.46 2.32 5.19
Slope 1.45 5.09 1.69 0.52 4.80 2.01 1.97 3.23 6.33 3.03
Elevation 4.22 4.49 4.22 2.92 1.51 3.38 3.16 5.38 4.05 3.08
Tab.3  The importance of characteristic variables in Guqiao Coal Mine and Nanshan Iron Mine
Fig.3  Accuracy of land use classification for Guqiao Coal Mine and Nanshan Iron Mine
年份 耕地 水域 建设用地
2000年 114.54 7.82 25.24
2005年 100.22 11.22 36.16
2010年 95.50 15.65 36.46
2015年 83.69 18.89 45.02
2020年 89.15 21.70 36.75
Tab.4  Area of each land use type in Guqiao Coal Mine(km2)
年份 耕地 林地 水域 建设用地
2000年 100.98 66.59 6.36 24.85
2005年 98.40 74.14 3.38 22.86
2010年 104.56 40.75 8.95 44.53
2015年 80.90 48.30 2.78 66.79
2020年 78.32 62.02 5.96 52.48
Tab.5  Area of each land use type in Nanshan Iron Mine(km2)
Fig.4  Land use classification results for Guqiao Coal Mine
Fig.5  Land use classification results for Nanshan Iron Mine
指标 顾桥煤矿 南山铁矿
2000年 2005年 2010年 2015年 2020年 2000年 2005年 2010年 2015年 2020年
NDVI 0.585 0.654 0.790 0.647 0.672 0.501 0.733 0.783 0.704 0.712
WET 0.310 0.298 0.191 0.252 0.251 0.341 -0.447 0.058 0.148 0.206
LST -0.123 -0.227 0.034 -0.060 -0.203 -0.406 0.058 -0.416 -0.087 -0.252
NDBSI -0.739 -0.657 -0.581 -0.718 -0.667 -0.684 0.508 -0.459 -0.689 -0.622
特征值 0.049 0.037 0.056 0.029 0.031 0.048 0.007 0.042 0.026 0.048
贡献率/% 70.95 77.89 74.18 71.22 76.94 75.98 79.60 82.70 77.81 85.07
Tab.6  PC1 loadings for the four indicators in Guqiao Coal Mine and Nanshan Iron Mine
Fig.6  RSEI of Guqiao Coal Mine and Nanshan Iron Mine from 2000 to 2020
Fig.7-1  Ecological grading and area chart for Guqiao Coal Mine
Fig.7-2  Ecological grading and area chart for Guqiao Coal Mine
Fig.8  Ecological grading and area chart for Nanshan Iron Mine
趋势等级 顾桥煤矿 南山铁矿
面积/km2 占比/% 面积/km2 占比/%
显著下降 5.46 3.7 22.67 10.9
下降 6.94 4.7 36.18 18.2
无明显变化 2.95 2.0 43.73 22.0
上升 120.59 81.7 76.33 38.4
显著上升 11.66 7.9 19.87 10.5
Tab.7  Area proportion of different RSEI trend in Guqiao Coal Mine and Nanshan Iron Mine from 2000 to 2020
Fig.9  RSEI trend analysis in Guqiao Coal Mine and Nanshan Iron Mine from 2000 to 2020
Fig.10  Ecological contribution rates of land use transfer types in Guqiao Coal Mine and Nanshan Iron Mine
[1] 刘英, 许萍萍, 毕银丽, 等. 新疆戈壁煤矿露天开采对生态环境扰动定量分析[J]. 煤炭学报, 2023, 48(2):959-974.
[1] Liu Y, Xu P P, Bi Y L, et al. Quantitative analysis of coal mining disturbance on environment in Xinjiang Gobi open-pit mining area[J]. Journal of China Coal Society, 2023, 48(2):959-974.
[2] 王晓辉, 耿宜佳. 淮南煤矿区土地利用变化分析[J]. 安徽农业科学, 2015, 43(36):295-298.
[2] Wang X H, Geng Y J. Land use changes in Huainan coal mining area[J]. Journal of Anhui Agricultural Sciences, 2015, 43(36):295-298.
[3] 张敏. 大型露天煤矿区土地利用时空演变特征及生态影响研究[D]. 北京: 中国地质大学(北京), 2021.
[3] Zhang M. Spatio-temporal evolution characteristics of land use change and ecological impact in a large opencast coal mine area[D]. Beijing: China University of Geosciences, 2021.
[4] 朱冬雨, 陈涛, 牛瑞卿, 等. 利用移动窗口遥感生态指数分析矿区生态环境[J]. 武汉大学学报(信息科学版), 2021, 46(3):341-347.
[4] Zhu D Y, Chen T, Niu R Q, et al. Analyzing the ecological environment of mining area by using moving window remote sensing ecological index[J]. Geomatics and Information Science of Wuhan University, 2021, 46(3):341-347.
[5] 王双明, 杜华栋, 王生全. 神木北部采煤塌陷区土壤与植被损害过程及机理分析[J]. 煤炭学报, 2017, 42(1):17-26.
[5] Wang S M, Du H D, Wang S Q. Analysis of damage process and mechanism for plant community and soil properties at northern Shenmu subsidence mining area[J]. Journal of China Coal Society, 2017, 42(1):17-26.
[6] 范立民, 向茂西, 彭捷, 等. 西部生态脆弱矿区地下水对高强度采煤的响应[J]. 煤炭学报, 2016, 41(11):2672-2678.
[6] Fan L M, Xiang M X, Peng J, et al. Groundwater response to intensive mining in ecologically fragile area[J]. Journal of China Coal Society, 2016, 41(11):2672-2678.
[7] 汪云甲. 矿区生态扰动监测研究进展与展望[J]. 测绘学报, 2017, 46(10):1705-1716.
doi: 10.11947/j.AGCS.2017.20170358
[7] Wang Y J. Research progress and prospect on ecological distur-bance monitoring in mining area[J]. ActaGeodaetica et Cartographica Sinica, 2017, 46(10):1705-1716.
[8] 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24):7853-7862.
[8] Xu H Q. A remote sensing urban ecological index and its application[J]. ActaEcologica Sinica, 2013, 33(24):7853-7862.
[9] Liu H, Jiang Y, Misa R, et al. Ecological environment changes of mining areas around Nansi Lake with remote sensing monitoring[J]. Environmental Science and Pollution Research International, 2021, 28(32):44152-44164.
[10] Nie X, Hu Z, Zhu Q, et al. Research on temporal and spatial resolution and the driving forces of ecological environment quality in coal mining areas considering topographic correction[J]. Remote Sensing, 2021, 13(14):2815.
[11] Tang H, Fang J, Xie R, et al. Impact of land cover change on a typical mining region and its ecological environment quality evaluation using remote sensing based ecological index (RSEI)[J]. Sustainability, 2022, 14(19):12694.
[12] Breiman L. Randomforests[J]. Machine Learning, 2001, 45(1):5-32.
[13] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 21010—2017 土地利用现状分类[S]. 北京: 中国标准出版社, 2017.
[13] General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. GB/T 21010—2017 Current land use classification[S]. Beijing: Standards Press of China, 2017.
[14] 姚金玺, 王浪, 李建忠, 等. 青海诺木洪地区多源遥感及多特征组合地物分类[J]. 农业工程学报, 2022, 38(3):247-256.
[14] Yao J X, Wang L, Li J Z, et al. Multi-source remote sensing and multi-feature combination ground object classification in Nuomuhongareas,Qinghai Province of China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(3):247-256.
[15] Nichol J. Remote sensing of urban heat islands by day and night[J]. Photogrammetric Engineering & Remote Sensing, 2005, 71(5):613-621.
[16] Crist E P. A TM Tasseled Cap equivalent transformation for reflectance factor data[J]. Remote Sensing of Environment, 1985, 17(3):301-306.
[17] Baig M H A, Zhang L, Shuai T, et al. Derivation of a tasselled cap transformation based on Landsat8 at-satellite reflectance[J]. Remote Sensing Letters, 2014, 5(5):423-431.
[18] Rikimaru A, Roy P S, Miyatake S. Tropical forest cover density mapping[J]. Tropical Ecology, 2002, 43(1):39-47.
[19] Xu H. A new index for delineating built-up land features in satellite imagery[J]. International Journal of Remote Sensing, 2008, 29(14):4269-4276.
[20] Sen P K. Estimates of the regression coefficient based on Kendall’s Tau[J]. Journal of the American Statistical Association, 1968, 63(324):1379-1389.
[21] Kendall M G. Rank correlation methods[J]. The Economic Journal, 1948,59:575-577.
[22] 杨保华, 杨清华, 陈剑虹. 关于《生态环境状况评价技术规范(试行)》中土地退化指数的权重及计算方法的探讨[J]. 生态与农村环境学报, 2011, 27(3):103-107.
[22] Yang B H, Yang Q H, Chen J H. Weight of land(soil) degradation indices and optimization of their calculation in “technical criteria for evaluation of ecological environment(trial)”[J]. Journal of Ecology and Rural Environment, 2011, 27(3):103-107.
[23] 黄望望, 姜春露, 陈星, 等. 淮南新集矿区主要充水含水层水化学特征及成因[J]. 地球与环境, 2020, 48(4):432-442.
[23] Huang W W, Jiang C L, ChenX, et al. Chemical characteristics and genesis of deep groundwater in the Xinji mining area[J]. Earth and Environment, 2020, 48(4):432-442.
[24] 何庆. 露天煤矿复垦区生态系统服务功能评价与权衡研究[D]. 杨凌: 西北农林科技大学, 2023.
[24] He Q. The evaluation of ecosystem service function and its trade-off in reclamation area of opencast coal mine[D]. Yangling: Northwest A & F University, 2023.
[25] 李晓文, 方创琳, 黄金川, 等. 西北干旱区城市土地利用变化及其区域生态环境效应——以甘肃河西地区为例[J]. 第四纪研究, 2003, 23(3):280-290,348-349.
[25] Li X W, Fang C L, Huang J C, et al. The urban land use transformations and associated effects on eco-environment in Northwest China arid region:A case study in HexiRegion,Gansu Province[J]. Quaternary Sciences, 2003, 23(3):280-290,348-349.
[26] 宗慧琳, 张晓伦, 袁希平, 等. 利用GEE进行1990—2022年小江流域生态环境质量时空格局与演变趋势分析[J]. 环境科学, 2024, 45(7):4122-4136.
[26] Zong H L, Zhang X L, Yuan X P, et al. Xiaojiang river basin ecological environmental quality spatiotemporal pattern and evolutionary trend analysis using GEE from 1990 to 2022[J]. Environmental Science, 2024, 45(7):4122-4136.
[27] 雷少刚, 卞正富. 西部干旱区煤炭开采环境影响研究[J]. 生态学报, 2014, 34(11):2837-2843.
[27] Lei S G, Bian Z F. Research progress on the environment impacts from underground coal mining in arid western area of China[J]. ActaEcologica Sinica, 2014, 34(11):2837-2843.
[28] 刘硕, 李小光, 宋建伟, 等. 长山沟露天矿集中区土地利用时空变化的遥感监测与分析[J]. 水土保持通报, 2021, 41(4):121-127,2.
[28] Liu S, Li X G, Song J W, et al. Remote sensing monitoring and analysis of spatiotemporal changes in Changshangou open pit mine concentration area[J]. Bulletin of Soil and Water Conservation, 2021, 41(4):121-127,2.
[1] ZHENG Jiaxin, PEI Xiaolong, SONG Dongyang, TIAN Rui, ZHAO Zhongqiu, BAI Hang. Identification of ecologic zones based on ecosystem service value and ecological risk index from a perspective of spatiotemporal dynamics: A case study of Qinhuangdao City, Hebei Province[J]. Remote Sensing for Natural Resources, 2025, 37(3): 233-244.
[2] SUN Yaqin, DI Baogang, XING Yu, AN Na, ZHANG Xian. Remote sensing-based dynamic monitoring and ecological restoration effect assessment of abandoned open-pit mines in the Yangtze River economic belt within Hubei Province[J]. Remote Sensing for Natural Resources, 2025, 37(3): 32-44.
[3] CHAI Xinyu, WU Xianwen, CHEN Xiaohui, WANG Yu, ZHAO Xingtao. Multi-scenario simulation and prediction of land use in the Pearl River Delta urban agglomeration using the coupled Markov-FLUS model[J]. Remote Sensing for Natural Resources, 2025, 37(2): 140-147.
[4] ZHANG Jing, HU Xiaojia, WANG Wei, CHEN Donglei, HUANG Xuhong, YANG Junquan. Comprehensive assessment and analysis of natural resources and ecological conditions in the Zhangbei area[J]. Remote Sensing for Natural Resources, 2025, 37(2): 164-172.
[5] CHEN Yuanyuan, YAN Shuoting, YAN Jin, ZHENG Siqi, WANG Hao, ZHU Jie. Forest disturbance monitoring in Lishui City, China based on Landsat time series images and the LandTrendr algorithm[J]. Remote Sensing for Natural Resources, 2025, 37(1): 179-187.
[6] SONG Yingxu, ZOU Yujia, YE Runqing, HE Zhixia, WANG Ningtao. Dynamic analysis of landslide hazards in the Three Gorges Reservoir area based on Google Earth Engine[J]. Remote Sensing for Natural Resources, 2024, 36(1): 154-161.
[7] CUI Dunyue, WANG Shidong, ZHANG Xuejun. A remote sensing-based study on change in land use and vegetation cover in Xiong’an New Area from 1991 to 2021[J]. Remote Sensing for Natural Resources, 2023, 35(4): 214-225.
[8] TIAN Liulan, LYU Siyu, WU Zhaopeng, WANG Juanjuan, SHI Xinpeng. Changes and spatial conflict measurement of land use in Urumqi City[J]. Remote Sensing for Natural Resources, 2023, 35(4): 282-291.
[9] YU Sen, JIA Mingming, CHEN Gao, LU Yingying, LI Yi, ZHANG Bochun, LU Chunyan, LI Huiying. A study of the disturbance to mangrove forests in Dongzhaigang, Hainan based on LandTrendr[J]. Remote Sensing for Natural Resources, 2023, 35(2): 42-49.
[10] LI Yi, CHENG Lina, LU Yingying, ZHANG Bochun, YU Sen, JIA Mingming. A study on the changes in coastal tidal flats in the Laizhou Bay based on MSIC and OTSU[J]. Remote Sensing for Natural Resources, 2022, 34(4): 68-75.
[11] YANG Lianwei, ZHAO Juan, ZHU Jiatian, LIU Lei, ZHANG Ping. Spatial-temporal change and prediction of carbon stock in the ecosystem of Xi’an based on PLUS and InVEST models[J]. Remote Sensing for Natural Resources, 2022, 34(4): 175-182.
[12] SONG Qi, FENG Chunhui, MA Ziqiang, WANG Nan, JI Wenjun, PENG Jie. Simulation of land use change in oasis of arid areas based on Landsat images from 1990 to 2019[J]. Remote Sensing for Natural Resources, 2022, 34(1): 198-209.
[13] SANG Xiao, ZHANG Chengye, LI Jun, ZHU Shoujie, XING Jianghe, WANG Jinyang, WANG Xingjuan, LI Jiayao, YANG Ying. Application of intensity analysis theory in the land use change in Yijin Holo Banner under the background of coal mining[J]. Remote Sensing for Natural Resources, 2021, 33(3): 148-155.
[14] WANG Qingchuan, XI Yantao, LIU Xinran, ZHOU Wen, XU Xinran. Spatial-temporal response of ecological service value to land use change: A case study of Xuzhou City[J]. Remote Sensing for Natural Resources, 2021, 33(3): 219-228.
[15] Ruiqi GUO, Bo LU, Kailin CHEN. Dynamic simulation of multi-scenario land use change based on CLUMondo model: A case study of coastal cities in Guangxi[J]. Remote Sensing for Land & Resources, 2020, 32(1): 176-183.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech