Please wait a minute...
 
Remote Sensing for Natural Resources    2023, Vol. 35 Issue (3) : 25-34     DOI: 10.6046/zrzyyg.2022307
|
Intelligent detection of crab ponds using remote sensing images based on a cooperative interpretation mechanism
JIANG Zhuoran1(), ZHOU Xinxin2,3,4, CAO Wei5, WANG Yahua1,3,4, WU Changbin1,3,4()
1. School of Geography, Nanjing Normal University, Nanjing 210023, China
2. School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
3. Key Lab of Virtual Geographic Environment, Ministry of Education, Nanjing Normal University, Nanjing 210023, China
4. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023,China
5. Nanjing Guotu Information Industry Co., Ltd., Nanjing 210000, China
Download: PDF(7173 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Digging ponds to raise crabs is a non-grain behavior of cultivated land, endangering national food security. However, the intelligent interpretation of remote sensing images targeting this behavior faces challenges such as laborious manual interpretation and low verification efficiency. Based on a cooperative interpretation mechanism, this study proposed an intelligent method for detecting crab ponds using remote sensing images. This method, integrating the HRNet segmentation network and the Swin-Transformer classification network models and combining manual verification, improved the detection accuracy and work efficiency. The application results of this method to Gaochun District, Nanjing City, Jiangsu Province show that the method for intelligent detection can automatically determine 83.4% of the spots for detection, with final identification accuracy of 0.972. The method proposed in this study can significantly reduce the identification difficulty and manual verification workload while improving the detection accuracy. Therefore, this study will provide a reliable solution for the accurate and efficient detection of non-grain surface features such as crab ponds.

Keywords cooperative interpretation mechanism      HRNet      Swin-Transformer      crab pond detection      non-grain     
ZTFLH:  TP79  
Issue Date: 19 September 2023
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Zhuoran JIANG
Xinxin ZHOU
Wei CAO
Yahua WANG
Changbin WU
Cite this article:   
Zhuoran JIANG,Xinxin ZHOU,Wei CAO, et al. Intelligent detection of crab ponds using remote sensing images based on a cooperative interpretation mechanism[J]. Remote Sensing for Natural Resources, 2023, 35(3): 25-34.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2022307     OR     https://www.gtzyyg.com/EN/Y2023/V35/I3/25
Fig.1  Technology roadmap
Fig.2  HRNet network structure[17]
Fig.3  Schematic diagram of feature fusion[17]
Fig.4  Swin-Transformer network structure[18]
Fig.5  Overview of the study area
Fig.6  Schematic diagram of HRNet sample
Fig.7  Schematic diagram of Swin-Transformer sample
Fig.8  Schematic diagram of manual interpretation sample
Fig.9  Partial results of crab pond prediction of HRNet model
Fig.10  Optimization of image segmentation results
分类结果 真实类别 总计
蟹塘 非蟹塘
蟹塘 10 464 727 11 191
非蟹塘 350 3 862 4 212
总计 10 814 4 589 15 403
准确率 0.930
精确率 0.935
召回率 0.967
F1系数 0.941
Tab.1  Accuracy of Swin-Transformer model to predicts the crab pond
序号 预测正确的蟹塘地块 预测正确的非蟹塘地块 预测错误的蟹塘地块 预测错误的非蟹塘地块
1
2
3
4
Tab.2  Reasoning results of Swin-Transformer model
指标 人机协同判读前 人机协同判读后
蟹塘图斑数 18 471 13 696
非蟹塘图斑数 0 4 775
实际蟹塘图斑数 13 319 13 319
准确率 0.721 0.972
Tab.3  Accuracy changes before and after collaborative interpretation mechanism
Fig.11  Final interpretation results of crab pond
[1] 杨瑞珍, 陈印军, 易小燕, 等. 耕地流转中过度“非粮化”倾向产生的原因与对策[J]. 中国农业资源与区划, 2012, 33(3):14-17.
[1] Yang R Z, Chen Y J, Yi X Y, et al. The causes and countermeasures on the excessive “non-food” tendency in the process of land transfer[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2012, 33(3):14-17.
[2] 王勇, 陈印军, 易小燕, 等. 耕地流转中的“非粮化”问题与对策建议[J]. 中国农业资源与区划, 2011, 32(4):13-16.
[2] Wang Y, Chen Y J, Yi X Y, et al. The non-grain problem in the process of land transfer and the countermeasures[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2011, 32(4):13-16.
[3] 匡远配, 刘洋. 农地流转过程中的“非农化”、“非粮化”辨析[J]. 农村经济, 2018(4):1-6.
[3] Kuang Y P, Liu Y. Distingushing “non-agriculturalization” and “non-grainification” in the process of rural land transfer[J]. Rural Economy, 2018(4):1-6.
[4] 李小江, 孟庆岩, 王春梅, 等. 一种面向对象的像元级遥感图像分类方法[J]. 地球信息科学学报, 2013, 15(5):744-751.
[4] Li X J, Meng Q Y, Wang C M, et al. A hybrid model of object-oriented and pixel based classification of remotely sensed data[J]. Journal of Geo-Information Science, 2013, 15(5):744-751.
doi: 10.3724/SP.J.1047.2013.00744 url: http://www.dqxxkx.cn/CN/10.3724/SP.J.1047.2013.00744
[5] 张继贤, 顾海燕, 杨懿, 等. 高分辨率遥感影像智能解译研究进展与趋势[J]. 遥感学报, 2021, 25(11):2198-2210.
[5] Zhang J X, Gu H Y, Yang Y, et al. Research progress and trend of high-resolution remote sensing imagery intelligent interpretation[J]. National Remote Sensing Bulletin, 2021, 25(11):2198-2210.
doi: 10.11834/jrs.20210382 url: http://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20210382/
[6] Blaschke T. Object based image analysis for remote sensing[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2010, 65(1):2-16
doi: 10.1016/j.isprsjprs.2009.06.004 url: https://linkinghub.elsevier.com/retrieve/pii/S0924271609000884
[7] Ma L, Li M, Ma X X, et al. A review of supervised object-based land-cover image classification[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 130:277-293.
doi: 10.1016/j.isprsjprs.2017.06.001 url: https://linkinghub.elsevier.com/retrieve/pii/S092427161630661X
[8] 张裕, 杨海涛, 袁春慧. 遥感图像分类方法综述[J]. 兵器装备工程学报, 2018, 39(8):108-112.
[8] Zhang Y, Yang H T, Yuan C H. A survey of remote sensing image classification methods[J]. Journal of Ordnance Equipment Engineering, 2018, 39(8):108-112.
[9] 魏飞鸣, 李小文, 顾行发, 等. 基于形状参数的遥感图像“同谱异物”目标区分[C]// 第十四届全国图象图形学学术会议论文集, 2008:477-481.
[9] Wei F M, Li X W, Gu X F, et al. Shape-based classification of “spectral similar” objects in remote sensing image processing[C]// Proceedings of the 14th National Conference on Image Graphics, 2008:477-481.
[10] 秦其明. 遥感图像自动解译面临的问题与解决的途径[J]. 测绘科学, 2000, 25(2):21-24.
[10] Qing Q M. The problem and approach in the auto-interpretation of remote sensing imagery[J]. Science of Surveying and Mapping, 2000, 25(2):21-24.
[11] 李国清, 柏永青, 杨轩, 等. 基于深度学习的高分辨率遥感影像土地覆盖自动分类方法[J]. 地球信息科学学报, 2021, 23(9):1690-1704.
doi: 10.12082/dqxxkx.2021.200795
[11] Li G Q, Bo Y Q, Yang X, et al. Automatic deep learning land cover classification methods of high-resolution remotely sensed images[J]. Journal of Geo-Information Science, 2021, 23(9):1690-1704.
[12] 王立国, 王丽凤. 结合高光谱像素级信息和CNN的玉米种子品种识别模型[J]. 遥感学报, 2021, 25(11):2234-2244.
[12] Wang L G, Wang L F. Variety identification model for maize seeds using hyperspectral pixel-level information combined with convolutional neural network[J]. National Remote Sensing Bulletin, 2021, 25(11):2234-2244.
doi: 10.11834/jrs.20219349 url: http://www.ygxb.ac.cn/zh/article/doi/10.11834/jrs.20219349/
[13] Zhang L P, Zhang L F, Du B. Deep learning for remote sensing data: A technical tutorial on the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2016, 4(2):22-40.
doi: 10.1109/MGRS.2016.2540798 url: http://ieeexplore.ieee.org/document/7486259/
[14] 王华俊, 葛小三. 一种轻量级的DeepLabv3+遥感影像建筑物提取方法[J]. 自然资源遥感, 2022, 34(2):128-135.doi:10.6046/zrzyyg.2021219.
doi: 10.6046/zrzyyg.2021219
[14] Wang H J, Ge X S. Lightweight DeepLabv3+ building extraction method from remote sensing images[J]. Remote Sensing for Natural Resources, 2022, 34(2):128-135.doi:10.6046/zrzyyg.2021219.
doi: 10.6046/zrzyyg.2021219
[15] 刘万军, 高健康, 曲海成, 等. 多尺度特征增强的遥感图像舰船目标检测[J]. 自然资源遥感, 2021, 33(3):97-106.doi:10.6046/zrzyyg.2020372.
doi: 10.6046/zrzyyg.2020372
[15] Liu W J, Gao J K, Qu H C, et al. Ship detection based on multi-scale feature enhancement of remote sensing images[J]. Remote Sensing for Natural Resources, 2021, 33(3): 97-106.doi:10.6046/zrzyyg.2020372.
doi: 10.6046/zrzyyg.2020372
[16] 于新莉, 宋妍, 杨淼, 等. 结合空间约束的卷积神经网络多模型多尺度船企场景识别[J]. 自然资源遥感, 2021, 33(4):72-81.doi:10.6046/zrzyyg.2021020.
doi: 10.6046/zrzyyg.2021020
[16] Yu X L, Song Y, Yang M, et al. Multi-model and multi-scale scene recognition of shipbuilding enterprises based on convolutional neural network with spatial constraints[J]. Remote Sensing for Natural Resources, 2021, 33(4):72-81.doi:10.6046/zrzyyg.2021020.
doi: 10.6046/zrzyyg.2021020
[17] Sun K, Xiao B, Liu D, et al. Deep high-resolution representation learning for human pose estimation[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019:5693-5703.
[18] Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision(CVPR), 2021:10012-10022.
[19] 戴青云, 余英林. 数学形态学在图象处理中的应用进展[J]. 控制理论与应用, 2001, 18(4):5.
[19] Dai Q Y, Yu Y L. The advances of mathematical morphology in image processing[J]. Control Theory and Applications, 2001, 18(4):5.
[20] 刁智华, 赵春江, 吴刚, 等. 数学形态学在作物病害图像处理中的应用研究[J]. 中国图象图形学报, 2010, 15(2):194-199.
[20] Diao Z H, Zhao C J, Wu G, et al. Application research of mathematical morphology in image processing of crop disease[J]. Journal of Image and Graphics, 2010, 15(2):194-199.
[21] Yang K, Zeng L B, Wang D C. A fast arithmetic for the erosion and dilation operations of mathematical morphology[J]. Computer Engineering and Applications, 2005, 41(34):54-56.
[22] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017:6000-6010.
[23] He K, Zhang X, Ren S, et al. Deep residual learning for image reco-gnition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2016.
[1] WANG Liying, MA Xuwei, YOU Ze, WANG Shichao, CAMARA Mahamadou. Spatial-spectral joint classification of airborne multispectral LiDAR point clouds based on the multivariate GMM[J]. Remote Sensing for Natural Resources, 2023, 35(3): 88-96.
[2] FENG Xiaogang, ZHAO Yi, LI Meng, ZHOU Zaihui, LI Fengxia, WANG Yuan, YANG Yongquan. Influence of urban rivers and their surrounding land on the surface thermal environment[J]. Remote Sensing for Natural Resources, 2023, 35(3): 264-273.
[3] WU Weichao, YE Fawang. Cloud detection of Sentinel-2 images for multiple backgrounds[J]. Remote Sensing for Natural Resources, 2023, 35(3): 124-133.
[4] DONG Ting, FU Weiqi, SHAO Pan, GAO Lipeng, WU Changdong. Detection of changes in SAR images based on an improved fully-connected conditional random field[J]. Remote Sensing for Natural Resources, 2023, 35(3): 134-144.
[5] LIN Jiahui, LIU Guang, FAN Jinghui, ZHAO Hongli, BAI Shibiao, PAN Hongyu. Extracting information about mining subsidence by combining an improved U-Net model and D-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 145-152.
[6] GAO Chen, MA Dong, QU Man, QIAN Jianguo, YIN Haiquan, HOU Xiaozhen. Exploring the anomaly mechanism of borehole strain at the Huailai seismic station based on PS-InSAR[J]. Remote Sensing for Natural Resources, 2023, 35(3): 153-159.
[7] XI Lei, SHU Qingtai, SUN Yang, HUANG Jinjun, SONG Hanyue. Optimizing an ICESat2-based remote sensing estimation model for the leaf area index of mountain forests in southwestern China[J]. Remote Sensing for Natural Resources, 2023, 35(3): 160-169.
[8] WANG Jianqiang, ZOU Zhaohui, LIU Rongbo, LIU Zhisong. A method for extracting information on coastal aquacultural ponds from remote sensing images based on a U2-Net deep learning model[J]. Remote Sensing for Natural Resources, 2023, 35(3): 17-24.
[9] CHEN Haoyu, XIANG Lei, GAO He, MU Jinyi, SUO Xiaojing, HUA Bowei. Hyperspectral inversion of total nitrogen content in soils based on fractional order differential[J]. Remote Sensing for Natural Resources, 2023, 35(3): 170-178.
[10] HU Chenxia, ZOU Bin, LIANG Yu, HE Chencheng, LIN Zhijia. Spatio-temporal evolution of gross ecosystem product with high spatial resolution: A case study of Hunan Province during 2000—2020[J]. Remote Sensing for Natural Resources, 2023, 35(3): 179-189.
[11] YANG Yujin, YANG Fan, XU Zhenni, LI Zhu. Analysis and optimization of the spatio-temporal coordination between the ecological services and economic development in the Dongting Lake area[J]. Remote Sensing for Natural Resources, 2023, 35(3): 190-200.
[12] PARIHA Helili, ZAN Mei. Spatio-temporal changes and influencing factors of ecological environments in oasis cities of arid regions[J]. Remote Sensing for Natural Resources, 2023, 35(3): 201-211.
[13] WANG Yelan, YANG Xin, HAO Lina. Spatio-temporal changes in the normalized difference vegetation index of vegetation in the western Sichuan Plateau during 2001—2021 and their driving factors[J]. Remote Sensing for Natural Resources, 2023, 35(3): 212-220.
[14] LOU Yanhan, LIAO Jingjuan, CHEN Jiaming. Monitoring water level changes in the middle and lower reaches of the Yangtze River using Sentinel-3A satellite altimetry data[J]. Remote Sensing for Natural Resources, 2023, 35(3): 221-229.
[15] ZHOU Shisong, TANG Yuqi, CHENG Yuxiang, ZOU Bin, FENG Huihui. Spatial heterogeneity of the correlation between water quality and land use in the Chenjiang River basin, Chenzhou City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 230-240.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech