Please wait a minute...
 
Remote Sensing for Land & Resources    2020, Vol. 32 Issue (4) : 97-104     DOI: 10.6046/gtzyyg.2020.04.14
|
Extraction of paddy rice based on convolutional neural network using multi-source remote sensing data
CAI Yaotong1,2,3,4(), LIU Shutong4, LIN Hui1,2,3,4, ZHANG Meng1,2,3,4()
1. Research Center of Forestry Remote Sensing and Information Engineering, Central South University of Forestry and Technology, Changsha 410004, China
2. Key Laboratory of Forestry Remote Sensing Based Big Data and Ecological Security for Hunan Province, Changsha 410004, China
3. Key Laboratory of State Forestry Administration on Forest Resources Management and Monitoring in Southern Area, Changsha 410004, China
4. College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
Download: PDF(5928 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Rice is one of the most widely planted food crops in China. Therefore, timely and accurate rice identification and monitoring is of great significance to the national food security and the evolution of agricultural land spatial pattern. In this study, multi-temporal Sentinel-2A multispectral images, vegetation indices, vegetation abundance and Landsat 8 derived LST on the critical period of rice phenology were used. The CNN, SVM and RF classifiers were applied to extracting the paddy rice and finally the paddy rice map was obtained. The result shows that using multi-temporal and multi-source remote sensing data with the CNN algorithm can effectively extract rice information in high heterogeneity region. The overall accuracy of rice classification and Kappa coefficient are over 92% and 0.90 respectively. This study has demonstrated the potential of using moderate spatial resolution images combined with CNN to map the paddy rice in highly heterogeneous area.

Keywords paddy rice      Sentinel-2A      Landsat8      convolutional neural network(CNN)      Changsha-Zhuzhou-Xiangtan Area     
:  TP79  
Corresponding Authors: ZHANG Meng     E-mail: yaotongcai@csuft.edu.cn;mengzhang@csuft.edu.cn
Issue Date: 23 December 2020
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Yaotong CAI
Shutong LIU
Hui LIN
Meng ZHANG
Cite this article:   
Yaotong CAI,Shutong LIU,Hui LIN, et al. Extraction of paddy rice based on convolutional neural network using multi-source remote sensing data[J]. Remote Sensing for Land & Resources, 2020, 32(4): 97-104.
URL:  
https://www.gtzyyg.com/EN/10.6046/gtzyyg.2020.04.14     OR     https://www.gtzyyg.com/EN/Y2020/V32/I4/97
Fig.1  Study area
月份 双季稻(早稻) 双季稻(晚稻) 单季稻
3月 播种与移栽
4月 播种与移栽
5月 开花期
6月
7月 成熟期 移栽 开花期
8月
9月 开花期 成熟期
10月 成熟期
Tab.1  Phenology of rice
遥感数据类型 时间 行列号 产品
等级
云量/%
Sentinel-2A 2017-04-08 N0205_R075 L1C 0.029
2017-07-12 N0205_R075 L1C 0.461
2017-09-15 N0205_R075 L1C 0.198
2017-10-30 N0205_R075 L1C 0.352
Landsat8 2017-04-05 123/40 123/41 L1T 0.61
2017-07-10 123/40 123/41 L1T 1.87
2017-09-12 123/40 123/41 L1T 3.05
2017-10-30 123/40 123/41 L1T 1.07
Tab.2  Parameters of remote sensing data set
Fig.2  Flowchart
地物类型 水稻 蔬菜基地 其他作物 林地 建筑物 水域
样本数量 442 234 223 166 177 156
Tab.3  Training sample information for double-cropping rice extraction(个)
Fig.3  Paddy rice extracted results by three classifiers
分类方法 类型 PA/% UA/% OA/% Kappa系数
CNN 水稻 90.24 91.32 92.11 0.90
蔬菜基地 86.77 85.91
其他作物 87.66 86.74
其他 94.62 95.17
SVM 水稻 79.98 81.46 82.47 0.76
蔬菜基地 81.37 80.28
其他作物 80.62 80.06
其他 87.25 86.27
RF 水稻 82.67 82.05 83.77 0.80
蔬菜基地 83.24 84.67
其他作物 78.69. 80.17
其他 89.92 88.69
Tab.4  Classification accuracy of CNN, SVM and RF
Fig.4-1  Classification results in three typical regions by different classifiers
Fig.4-2  Classification results in three typical regions by different classifiers
[1] 罗观长. 南方稻作、地块特征与农户种植模式——基于南方五省稻农调查数据实证分析[D]. 广州:华南农业大学, 2016.
[1] Luo G C. Rice in south China,land characteristics,farmers planting patterns:Empirical analysis based on survey data of five southern provinces rice farmers[D]. Guangzhou:South China Agricultural University, 2016.
[2] Dong J, Xiao X. Evolution of regional to global paddy rice mapping methods:A review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016,119(1):214-227.
[3] Bachelet D. Rice paddy inventory in a few provinces of China using AVHRR data[J]. Geocarto International, 1995,10(1):23-38.
[4] Xiao X, Boles S, Frolking S, et al. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images[J]. Remote Sensing of Environment, 2006,100(1):95-113.
[5] Cai Y T, Zhang M, Lin H. Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data[J]. Advance in Space Research, 2019,64(11):2233-2244.
[6] Thenkabail P S. Mapping rice areas of south Asia using MODIS multitemporal data[J]. Journal of Applied Remote Sensing, 2011,5(4):863-871.
[7] Dong J, Xiao X, Kou W, et al. Tracking the dynamics of paddy rice planting area in 1986—2010 through time series Landsat images and phenology-based algorithms[J]. Remote Sensing of Environment, 2015,160(160):99-113.
[8] 张猛, 曾永年. 基于多时相Landsat数据融合的洞庭湖区水稻面积提取[J]. 农业工程学报, 2015,31(13):178-185.
[8] Zhang M, Zeng Y N. Mapping paddy fields of Dongting Lake area by fusing Landsat and MODIS data[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015,31(13):178-185.
[9] 杨斌, 李丹, 高桂胜, 等. Sentinel-2A卫星数据处理分析及再干旱河谷提取中的应用[J]. 国土资源遥感, 2018,30(3):128-135.doi: 10.6046/gtzyyg.2018.03.18.
[9] Yang B, Li D, Gao G S, et al. Processing analysis of Sentinel-2A data and application to arid valleys extraction[J]. Remote Sensing for Land and Resources, 2018,30(3):128-135.doi: 10.6046/gtzyyg.2018.03.18.
[10] Lambert M, Traore P, Blaes X, et al. Estimating smallholder crops production at village level from Sentinel-2 time series in Mali’s cotton belt[J]. Remote Sensing of Environment, 2018,216(1):647-657.
[11] Toshihiro S, Masayuki Y, Hitoshi T, et al. A crop phenology detection method using time-series MODIS data[J]. Remote Sensing of Environment, 2005,96(3):366-374.
[12] Wardlow B D, Egbert S L. Large-area crop mapping using time-series MODIS 250 m NDVI data:An assessment for the U.S. Central Great Plains[J]. Remote Sensing of Environment, 2008,112(3):1096-1116.
[13] 国贤玉, 李坤, 王志勇, 等. 基于SVM+SFS策略的多时相紧致极化SAR水稻精细分类[J]. 国土资源遥感, 2018,30(4):20-27.doi: 10.6046/gtzyyg.2018.04.04.
[13] Guo X Y, Li K, Wang Z Y, et al. Fine classification of rice with multi-temporal compact polarimetric SAR based on SVM+SFS strategy[J]. Remote Sensing for Land and Resources, 2018,30(4):20-27.doi: 10.6046/gtzyyg.2018.04.04.
[14] Qin Y, Xiao X, Dong J, et al. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat8 (OLI),Landsat7 (ETM+) and MODIS imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015,105:220-233.
doi: 10.1016/j.isprsjprs.2015.04.008 pmid: 27695195 url: https://www.ncbi.nlm.nih.gov/pubmed/27695195
[15] Erinjery J, Singh M, Kent R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite[J]. Remote Sensing of Environment, 2018,216(1):345-354.
[16] Romero A, Gatta C, Camps-vall G. Unsupervised deep feature extraction for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016,54(3):1349-1362.
[17] Maggiori E, Tarabalka Y, Charpiat G, et al. Convolutional neural networks for large-scale remote-sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016,55(2):645-657.
doi: 10.1109/TGRS.2016.2612821 url: http://ieeexplore.ieee.org/document/7592858/
[18] Pan X, Zhao J. High-resolution remote sensing image classification method based on convolutional neural network and restricted conditional random field[J]. Remote Sensing, 2018,920(10):1-20.
[19] 蔡耀通, 林辉, 孙华, 等. 基于TanDEM-X数据的林分平均高反演方法研究[J]. 西南林业大学学报(自然科学), 2019,39(5):110-117.
[19] Cai Y T, Lin H, Sun H, et al. Stand allocation high inversion method based on TanDEM-X data[J]. Journal of Southwest Forestry University (Natural Sciences), 2019,39(5):110-117.
[20] 赵莲, 张锦水, 胡潭高, 等. 变端元混合像元分解冬小麦种植面积测量方法[J]. 国土资源遥感, 2011,23(1):66-72.doi: 10.6046/gtzyyg.2011.01.13.
[20] Zhao L, Zhang J S, Hu T G, et al. The application of the dynamic endmember linear spectral unmixing model to winter wheat area estimation[J]. Remote Sensing for Land and Resources, 2011,23(1):66-72.doi: 10.6046/gtzyyg.2011.01.13.
[21] Zhang M, Lin H, Wang G, et al. Mapping paddy rice using a convolutional neural network (CNN) with Landsat8 datasets in the Dongting Lake area,China[J]. Remote Sensing, 2018,10(11), 1840.
[22] 徐涵秋. 新型Landsat8卫星影像的反射率和地表温度反演[J]. 地球物理学报, 2015,58(3):741-747.
[22] Xu H Q. Retrieval of the reflectance and land surface temperature of the newly-launched Landsat8 satellite[J]. Chinese Journal of Geophysics, 2015,58(3):741-747.
[23] Azizpour H, Razavian A S, Sullivan J, et al. Factors of transferability for a generic ConvNet representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015,38(9):1790-1802.
doi: 10.1109/TPAMI.2015.2500224 pmid: 26584488 url: https://www.ncbi.nlm.nih.gov/pubmed/26584488
[24] Kontgis C, Schneider A, Ozdogan M. Mapping rice paddy extent and intensification in the Vietnamese Mekong River Delta with dense time stacks of Landsat data[J]. Remote Sensing of Environment, 2015,169:255-269.
doi: 10.1016/j.rse.2015.08.004 url: https://linkinghub.elsevier.com/retrieve/pii/S0034425715300936
[1] ZHAO Yi, XU Jianhui, ZHONG Kaiwen, WANG Yunpeng, HU Hongda, WU Pinghao. Impervious surface extraction based on Sentinel-2A and Landsat8[J]. Remote Sensing for Land & Resources, 2021, 33(2): 40-47.
[2] QIU Yifan, CHAI Dengfeng. A deep learning method for Landsat image cloud detection without manually labeled data[J]. Remote Sensing for Land & Resources, 2021, 33(1): 102-107.
[3] WANG Dejun, JIANG Qigang, LI Yuanhua, GUAN Haitao, ZHAO Pengfei, XI Jing. Land use classification of farming areas based on time series Sentinel-2A/B data and random forest algorithm[J]. Remote Sensing for Land & Resources, 2020, 32(4): 236-243.
[4] WANG Lin, XIE Hongbo, WEN Guangchao, YANG Yunhang. A study on water information extraction method of cyanobacteria lake based on Landsat8[J]. Remote Sensing for Land & Resources, 2020, 32(4): 130-136.
[5] Haigang SHI, Chunli LIANG, Jianyong ZHANG, Chunlei ZHANG, Xu CHENG. Remote sensing survey of the influence of coastline changes on the thermal discharge in the vicinity of Tianwan Nuclear Power Station[J]. Remote Sensing for Land & Resources, 2020, 32(2): 196-203.
[6] Jingjian LIU, Hongzhong LI, Cui HUA, Yuman SUN, Jinsong CHEN, Yu HAN. Extraction of early paddy rice area in Lingao County based on Sentinel-1A data[J]. Remote Sensing for Land & Resources, 2020, 32(1): 191-199.
[7] Zhili LIU, Qibin ZHANG, Depeng YUE, Yuguang HAO, Kai SU. Extraction of urban built-up areas based on Sentinel-2Aand NPP-VIIRS nighttime light data[J]. Remote Sensing for Land & Resources, 2019, 31(4): 227-234.
[8] Chang LIU, Kang YANG, Liang CHENG, Manchun LI, Ziyan GUO. Comparison of Landsat8 impervious surface extraction methods[J]. Remote Sensing for Land & Resources, 2019, 31(3): 148-156.
[9] Dazhao WANG, Simeng WANG, Chang HUANG. Comparison of Sentinel-2 imagery with Landsat8 imagery for surface water extraction using four common water indexes[J]. Remote Sensing for Land & Resources, 2019, 31(3): 157-165.
[10] Wenya LIU, Ruru DENG, Yeheng LIANG, Yi WU, Yongming LIU. Retrieval of chlorophyll-a concentration in Chaohu based on radiative transfer model[J]. Remote Sensing for Land & Resources, 2019, 31(2): 102-110.
[11] Junnan XIONG, Wei LI, Weiming CHENG, Chunkun FAN, Jin LI, Yunliang ZHAO. Spatial variability and influencing factors of LST in plateau area: Exemplified by Sangzhuzi District[J]. Remote Sensing for Land & Resources, 2019, 31(2): 164-171.
[12] Yueru WANG, Pengpeng HAN, Shujing GUAN, Yu HAN, Lin YI, Tinggang ZHOU, Jinsong CHEN. Information extraction of Dracaena sanderiana planting area based on Landsat8 OLI data[J]. Remote Sensing for Land & Resources, 2019, 31(1): 133-140.
[13] Guifen SUN, Xianlin QIN, Shuchao LIU, Xiaotong LI, Xiaozhong CHEN, Xiangqing ZHONG. Potential analysis of typical vegetation index for identifying burned area[J]. Remote Sensing for Land & Resources, 2019, 31(1): 204-211.
[14] Jing LI, Qiangqiang SUN, Ping ZHANG, Danfeng SUN, Li WEN, Xianwen LI. A study of auxiliary monitoring in iron and steel plant based on multi-temporal thermal infrared remote sensing[J]. Remote Sensing for Land & Resources, 2019, 31(1): 220-228.
[15] Bin YANG, Dan LI, Guisheng GAO, Cai CHEN, Lei WANG. Processing analysis of Sentinel-2A data and application to arid valleys extraction[J]. Remote Sensing for Land & Resources, 2018, 30(3): 128-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech