Please wait a minute...
 
Remote Sensing for Natural Resources    2024, Vol. 36 Issue (3) : 187-195     DOI: 10.6046/zrzyyg.2023136
|
InVEST model-based analysis of spatiotemporal evolution characteristics of habitat quality in the ecological green integrated demonstration area, Yangtze River Delta
ZHAO Qiang1(), WANG Tianjiu2(), WANG Tao3, CHENG Sudan4
1. Faculty of Environmental and Surveying Engineering, Suzhou University, Suzhou 234000, China
2. Kunyu Mountain Forest Farm, Yantai 264112, China
3. Shaoxing Natural Resources and Planning Bureau Shangyu Branch, Shaoxing 312300, China
4. Hangzhou Geotechnical Engineering & Surveying Research Institute Limited Company, Hangzhou 310012,China
Download: PDF(4881 KB)   HTML
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks    
Abstract  

Assessing regional habitat quality holds great significance for maintaining regional biodiversity, enhancing human well-being, and achieving regional sustainable development. Based on the land use data of 2000, 2010, and 2020, this study analyzed the spatiotemporal characteristics of the habitat quality in the ecological green integrated demonstration area in the Yangtze River Delta using the InVEST model and the habitat quality index method. Furthermore, this study explored the relationship between regional habitat quality and land use. Key findings are as follows: ① From 2000 to 2020, the study area exhibited moderate habitat quality, with the habitat quality index trending downward and the habitat degradation gradually mitigating. Regarding the districts and counties in this area, Qingpu District of Shanghai, Wujiang District of Suzhou, Jiangsu, and Jiashan County of Jiaxing, Zhejiang (the two districts and one county) showed a downward trend in the habitat quality from 2000 to 2010. In contrast, from 2010 to 2020, Qingpu District and Jiashan County exhibited improved habitat quality, while Wujiang District still maintained a downward trend in the habitat quality; ② From 2000 to 2020, the study area primarily featured moderate habitat, with major land types including cultivated land and grassland. During this period, the water and wetland areas in the north and center, respectively exhibited the highest habitat quality, while the construction land in the study area displayed poor and inferior habitat; ③ There is a strong correlation between the habitat quality and land use structure in the study area. Specifically, areas with more intense changes in land use feature more significant variations in habitat quality. The results of this study will provide a reference for biodiversity conservation and land use management in the study area.

Keywords habitat quality      land use      transition matrix      InVEST model      biodiversity      spatiotemporal characteristic     
ZTFLH:  P237  
  TP79  
Issue Date: 03 September 2024
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Qiang ZHAO
Tianjiu WANG
Tao WANG
Sudan CHENG
Cite this article:   
Qiang ZHAO,Tianjiu WANG,Tao WANG, et al. InVEST model-based analysis of spatiotemporal evolution characteristics of habitat quality in the ecological green integrated demonstration area, Yangtze River Delta[J]. Remote Sensing for Natural Resources, 2024, 36(3): 187-195.
URL:  
https://www.gtzyyg.com/EN/10.6046/zrzyyg.2023136     OR     https://www.gtzyyg.com/EN/Y2024/V36/I3/187
Fig.1  Location of ecological green integrated demonstration area in Yangtze River Delta
威胁因子 最大影响距离/km 权重 衰退类型
耕地 0.5 0.2 线性
建设用地 5.0 0.5 指数
Tab.1  Threat factors and weights of research area
土地利用类型 生境适宜度 敏感度
耕地 建设用地
耕地 0.3 0.0 0.5
林地 1.0 0.4 0.6
草地 0.7 0.3 0.4
湿地 1.0 0.4 0.5
水域 0.9 0.6 0.7
建设用地 0.0 0.0 0.0
Tab.2  Appropriateness of life realm and its sensitivity to different thveat factors
乡级行政区 2000年 2010年 2020年 乡级行政区 2000年 2010年 2020年
白鹤镇 0.540 0.512 0.505 天凝镇 0.560 0.579 0.606
华新镇 0.460 0.405 0.336 干窑镇 0.572 0.558 0.598
重固镇 0.553 0.522 0.518 魏塘街道 0.517 0.454 0.491
香花桥街道 0.548 0.426 0.384 惠民街道 0.542 0.467 0.475
徐泾镇 0.449 0.340 0.286 罗星街道 0.543 0.459 0.420
赵巷镇 0.534 0.482 0.418 大云镇 0.553 0.517 0.514
夏阳街道 0.515 0.526 0.523 黎里镇 0.906 0.876 0.876
盈浦街道 0.532 0.484 0.374 同里镇 0.838 0.795 0.665
太湖新城镇 0.947 0.953 0.818 朱家角镇 0.866 0.865 0.956
金泽镇 0.840 0.806 0.855 平望镇 0.796 0.786 0.774
练塘镇 0.577 0.632 0.693 盛泽镇 0.610 0.547 0.517
西塘镇 0.606 0.625 0.600 震泽镇 0.687 0.599 0.639
姚庄镇 0.640 0.677 0.651 七都镇 0.733 0.695 0.925
陶庄镇 0.722 0.786 0.841 桃源镇 0.543 0.512 0.545
Tab.3  Average value of habitat quality index of all township-level divisions in ecological green integrated demonstration area in Yangtze River Delta from 2000 to 2020
Fig.2  Spatial distribution of habitat quality of ecological green integrated demonstration area in Yangtze River Delta
Fig.3  Grade schematic diagram of habitat quality of all township-level divisions in ecological green integrated demonstration area in Yangtze River Delta in 2000, 2010 and 2020
Fig.4  Land use changes of ecological green integrated demonstration area in Yangtze River Delta in 2000, 2010 and 2020
年份 指标 耕地 林地 草地 湿地 水域 建设用地
2000年 面积/km2 1 589.75 0.00 0.05 0.26 542.75 267.78
2010年 面积/km2 1 407.73 0.05 0.74 0.72 541.71 449.61
2020年 面积/km2 1 147.12 29.40 13.27 0.10 555.72 654.96
2000—2010年 面积变化量/km2 -182.02 0.05 0.69 0.45 -1.04 181.83
动态度/% -1.14 138.00 17.30 -0.02 6.79
2010—2020年 面积变化量/km2 -260.61 29.36 12.53 -0.62 14.01 205.35
动态度/% -1.85 169.00 -8.61 0.25 7.66
2000—2020年 面积变化量/km2 - 442.63 29.40 13.22 -0.16 12.97 387.18
动态度/% -1.39 1 322.00 -3.07 0.12 7.22
Tab.4  Land use changes of ecological green integrated demonstration area in Yangtze River Delta from 2000 to 2020
Fig.5  Diagram of land use type changes in 2000, 2010 and 2020
乡级
行政区
2000—
2010年
2010—
2020年
乡级
行政区
2000—
2010年
2010—
2020年
白鹤镇 2.50 0.17 天凝镇 0.42 3.78
华新镇 3.27 3.94 干窑镇 2.76 2.48
重固镇 3.32 0.22 魏塘街道 3.70 2.28
香花桥街道 6.39 2.27 惠民街道 4.30 3.12
徐泾镇 5.25 5.67 罗星街道 4.78 3.48
赵巷镇 5.22 4.14 大云镇 2.08 2.76
夏阳街道 3.77 1.13 黎里镇 0.62 2.14
盈浦街道 3.46 3.97 同里镇 2.09 3.07
太湖新城镇 1.36 2.79 朱家角镇 0.49 2.53
金泽镇 0.13 1.19 平望镇 0.25 2.07
练塘镇 2.67 1.36 盛泽镇 1.80 4.44
西塘镇 0.39 0.76 震泽镇 1.70 4.42
姚庄镇 2.61 0.67 七都镇 0.79 6.79
陶庄镇 1.14 1.58 桃源镇 0.64 1.87
Tab.5  Dynamic degree with comprehensive land use of township-level divisions(%)
时间段 2000—2010年 2010—2020年
Pearson相关系数 0.750**① 0.461*
Tab.6  Correlation of changes between land use and habitat quality
[1] 肖如林, 王新羿, 高吉喜. 生物多样性的价值及其与人类社会关系分析[J]. 环境影响评价, 2022, 44(3):1-4.
[1] Xiao R L, Wang X Y, Gao J X. Analysis on the value of biodiversity and its relationship with human society[J]. Environmental Impact Assessment, 2022, 44(3):1-4.
[2] 黄世忠. 第六次大灭绝背景下的信息披露——对欧盟《生物多样性和生态系统》准则的分析[J]. 财会月刊, 2022(14):3-11.
[2] Huang S Z. Information disclosure in the context of the sixth extinction:Analysis of the EU’s guidelines on biodiversity and ecosystem[J]. Finance and Accounting Monthly, 2022(14):3-11.
[3] 何清清, 何君. 基于InVEST模型的三峡库区(重庆段)生境质量时空演变分析[J]. 三峡生态环境监测, 2022, 7(1):15-25.
[3] He Q Q, He J. Spatial and temporal evolution of habitat quality in the Three Gorges Reservoir Area(Chongqing section) based on InVEST model[J]. Ecology and Environmental Monitoring of Three Gorges, 2022, 7(1):15-25.
[4] 崔囤月, 王世东, 张学军. 1991—2021年雄安新区土地利用与植被覆盖变化遥感研究[J]. 自然资源遥感, 2023, 35(4):214-225.doi:10.6046/zrzyyg.2022311.
[4] Cui D Y, Wang S D, Zhang X J. A remote sensing-based study on change in land use and vegetation cover in Xiong’an New Area from 1991 to 2021[J]. Remote Sensing for Natural Resources, 2023, 35(4):214-225.doi:10.6046/zrzyyg.2022311.
[5] 排日海·合力力, 昝梅.干旱区绿洲城市生态环境时空格局变化及影响因子研究[J]. 自然资源遥感, 2023, 35(3):201-211.doi:10.6046/zrzyyg.2022194.
[5] Pai R H, Zan M. Spatio-temporal changes and influencing factors of ecological environments in oasis cities of arid regions[J]. Remote Sensing for Natural Resources, 2023, 35(3):201-211.doi:10.6046/zrzyyg.2022194.
[6] 高庆彦, 潘玉君, 刘化. 基于InVEST模型的大理州生境质量时空演化研究[J]. 生态与农村环境学报, 2021, 37(3):402-408.
[6] Gao Q Y, Pan Y J, Liu H. Spatial-temporal evolution of habitat quality in the Dali Bai Autonomous Prefecture based on the InVEST model[J]. Journal of Ecology and Rural Environment, 2021, 37(3):402-408.
[7] 王建. 荒漠生态系统质量评估体系构建及评价——以内蒙古阿拉善盟为例[D]. 呼和浩特: 内蒙古大学, 2021.
[7] Wang J. Constrution and evaluation of desert ecosystem quality evaluation system[D]. Hohhot: Inner Mongolia University, 2021.
[8] 屈雯, 谢保鹏, 陈英, 等. 榆中县生境质量和生境退化的时空分异特征及其地形梯度效应[J]. 甘肃农业大学学报, 2022, 57(3):139-147.
[8] Qu W, Xie B P, Chen Y, et al. Spatio-temporal patterns of habitat quality and habitat degradation and its terrain gradient effects of Yuzhong County based on InVEST model[J]. Journal of Gansu Agricultural University, 2022, 57(3):139-147.
[9] Zhu C, Zhang X, Zhou M, et al. Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou,China[J]. Ecological Indicators, 2020, 117:106654.
[10] 孙汇颖, 宫巧巧, 刘庆果, 等. 基于土地利用变化的山东省生境质量时空演变特征[J]. 土壤通报, 2022, 53(5):1019-1028.
[10] Sun H Y, Gong Q Q, Liu Q G, et al. Spatio-temporal evolution of habitat quality based on the land-use changes in Shandong Province[J]. Chinese Journal of Soil Science, 2022, 53(5):1019-1028.
[11] 潘耀, 尹云鹤, 侯文娟, 等. 基于土地利用及植被覆盖变化的黄河源区生境质量时空变化特征[J]. 生态学报, 2022, 42(19):7978-7988.
[11] Pan Y, Yin Y H, Hou W J, et al. Spatio temporal variation of habitat quality in the source region of the Yellow River based on land use and vegetation cover changes[J]. Acta Ecologica Sinica, 2022, 42(19):7978-7988.
[12] 张京生, 郜梦妍, 张煜森, 等. 河南黄河湿地国家级自然保护区人类干扰对生境质量的影响及空间优化策略[J]. 水土保持通报, 2022, 42(5):140-150.
[12] Zhang J S, Gao M Y, Zhang Y S, et al. Impact of human disturbance on habitat quality and spatial optimization strategy in He’nan Yellow River Wetland National Nature Reserve[J]. Bulletin of Soil and Water Conservation, 2022, 42(5):140-150.
[13] 卢茵怡, 李天翔, 龚建周. 广东省不同地貌形态类型区生境质量归因[J]. 生态科学, 2022, 41(3):24-32.
[13] Lu Y Y, Li T X, Gong J Z. Attribution of habitat quality in different geomorphological types in Guangdong Province[J]. Ecological Science, 2022, 41(3):24-32.
[14] 刘汉仪, 林媚珍, 周汝波, 等. 基于InVEST模型的粤港澳大湾区生境质量时空演变分析[J]. 生态科学, 2021, 40(3):82-91.
[14] Liu H Y, Lin M Z, Zhou R B, et al. Spatial and temporal evolution of habitat quality in Guangdong-Hong Kong-Macao Greater Bay Area based on InVEST model[J]. Ecological Science, 2021, 40(3):82-91.
[15] 武丹, 李欢, 艾宁, 等. 基于CA-Markov的土地利用时空变化与生境质量预测——以宁夏中部干旱区为例[J]. 中国生态农业学报(中英文), 2020, 28(12):1969-1978.
[15] Wu D, Li H, Ai N, et al. Predicting spatiotemporal changes in land use and habitat quality based on CA-Markov:A case study in central Ningxia,China[J]. Chinese Journal of Eco-Agriculture, 2020, 28(12):1969-1978.
[16] Bender L, Roloff G, Haufler J. Evaluating confidence intervals for habitat suitability models[J]. Wildlife Society Bulletin, 1996, 24:347-352.
[17] 刘振生, 高惠, 滕丽微, 等. 基于MAXENT模型的贺兰山岩羊生境适宜性评价[J]. 生态学报, 2013, 33(22):7243-7249.
[17] Liu Z S, Gao H, Teng L W, et al. Habitat suitability assessment of blue sheep in Helan Mountain based on MAXENT modeling[J]. Acta Ecologica Sinica, 2013, 33(22):7243-7249.
[18] 伽光, 林文鹏, 徐润浇, 等. 基于遥感的SDG 15.1.2生物多样性指标计算与分析:以长三角生态绿色一体化发展示范区为例[J]. 环境科学研究, 2022, 35(4):1025-1036.
[18] Qie G, Lin W P, Xu R J, et al. Calculation and analysis of SDG 15.1.2 biodiversity index based on remote sensing:A case study of demonstration zone of green and integrated ecological development of the Yangtze River Delta[J]. Research of Environmental Sciences, 2022, 35(4):1025-1036.
[19] 李鲁冰. 基于生态系统服务价值的长三角城市群生态风险评价[D]. 上海: 上海师范大学, 2022.
[19] Li L B. Ecological risk assessment of Yangtze River Delta urban agglomeration based on ecosystem service value[D]. Shanghai: Shanghai Normal University, 2022.
[20] 刘垚燚, 曾鹏, 张然, 等. 基于GEE和BRT的1984—2019年长三角生态绿色一体化发展示范区植被覆盖度变化[J]. 应用生态学报, 2021, 32(3):1033-1044.
doi: 10.13287/j.1001-9332.202103.011
[20] Liu Y Y, Zeng P, Zhang R, et al. Vegetation coverage change of the demonstration area of ecologically friendly development in the Yangtze River Delta,China based on GEE and BRT during 1984—2019[J]. Chinese Journal of Applied Ecology, 2021, 32(3):1033-1044.
[21] 何天星, 田宁, 周锐, 等. 基于GEE和RSEI的长三角一体化示范区生态环境质量动态评估[J]. 生态学杂志, 2023, 42(2):436-444.
[21] He T X, Tian N, Zhou R, et al. Dynamic assessment of eco-environmental quality in Yangtze River Delta integration demonstration area based on GEE and RSEI[J]. Chinese Journal of Ecology, 2023, 42(2):436-444.
[22] 张华, 韩武宏, 宋金岳, 等. 祁连山国家公园生境质量时空演变[J]. 生态学杂志, 2021, 40(5):1419-1430.
[22] Zhang H, Han W H, Song J Y, et al. Spatial-temporal variations of habitat quality in Qilian Mountain National Park[J]. Chinese Journal of Ecology, 2021, 40(5):1419-1430.
[23] 傅春, 王乐志, 邓俊鹏, 等. 不同影响因素对鄱阳湖流域生境质量变化特征分析[J]. 中国农村水利水电, 2021(11):1-8,23.
[23] Fu C, Wang L Z, Deng J P, et al. An analysis of the characteristics of habitat quality change in Poyang Lake basin by different influencing factors[J]. China Rural Water and Hydropower, 2021(11):1-8,23.
[24] 常玉旸, 高阳, 谢臻, 等. 京津冀地区生境质量与景观格局演变及关联性[J]. 中国环境科学, 2021, 41(2):848-859.
[24] Chang Y Y, Gao Y, Xie Z, et al. Spatiotemporal evolution and spatial correlation of habitat quality and landscape pattern over Beijing-Tianjin-Hebei Region[J]. China Environmental Science, 2021, 41(2):848-859.
[25] 曹瑞超. 基于InVEST模型的西安市生境质量时空演变研究[J]. 农业与技术, 2021, 41(18):104-107.
[25] Cao R C. Research on the evolution of the evolution of the quality of life and space based on the InVEST model[J]. Agriculture and Technology, 2021, 41(18):104-107.
[26] 孙逸敏. 利用SPSS软件分析变量间的相关性[J]. 新疆教育学院学报, 2007, 23(2):120-123.
[26] Sun Y M. Using SPSS software to analyze the correlation between variables[J]. Journal of Xinjiang Education Institute, 2007, 23(2):120-123.
[1] CAO Delong, TANG Tingyuan, LIN Zhen, XU Zheng, YAN Xu. Coupled assessment and spatio-temporal evolution analysis of ecosystem health in Fujian Province[J]. Remote Sensing for Natural Resources, 2024, 36(1): 137-145.
[2] LI Shijie, FENG Huihui, WANG Zhen, YANG Zhuolin, WANG Shu. Ecological environment in the Dongting Lake basin over the past decade: Spatio-temporal dynamic characteristics and their influencing factors from 2010 to 2019[J]. Remote Sensing for Natural Resources, 2024, 36(1): 179-188.
[3] WU Bingjie, WEN Guangchao, ZHAO Meijuan, XIE Hongbo, FENG Yajie, JIA Lin. Analyzing the comprehensive evolutionary characteristics of the ecological environment in the Bayin River basin based on Landsat data[J]. Remote Sensing for Natural Resources, 2024, 36(1): 227-234.
[4] CUI Dunyue, WANG Shidong, ZHANG Xuejun. A remote sensing-based study on change in land use and vegetation cover in Xiong’an New Area from 1991 to 2021[J]. Remote Sensing for Natural Resources, 2023, 35(4): 214-225.
[5] TIAN Liulan, LYU Siyu, WU Zhaopeng, WANG Juanjuan, SHI Xinpeng. Changes and spatial conflict measurement of land use in Urumqi City[J]. Remote Sensing for Natural Resources, 2023, 35(4): 282-291.
[6] YANG Yujin, YANG Fan, XU Zhenni, LI Zhu. Analysis and optimization of the spatio-temporal coordination between the ecological services and economic development in the Dongting Lake area[J]. Remote Sensing for Natural Resources, 2023, 35(3): 190-200.
[7] ZHOU Shisong, TANG Yuqi, CHENG Yuxiang, ZOU Bin, FENG Huihui. Spatial heterogeneity of the correlation between water quality and land use in the Chenjiang River basin, Chenzhou City[J]. Remote Sensing for Natural Resources, 2023, 35(3): 230-240.
[8] LIANG Jintao, CHEN Chao, ZHANG Zili, LIU Zhisong. A random forest-based method integrating indices and principal components for classifying remote sensing images[J]. Remote Sensing for Natural Resources, 2023, 35(3): 35-42.
[9] XIONG Dongyang, ZHANG Lin, LI Guoqing. MaxEnt-based multi-class classification of land use in remote sensing image interpretation[J]. Remote Sensing for Natural Resources, 2023, 35(2): 140-148.
[10] WANG Haiwen, JIA Junqing, LI Beichen, DONG Yongping, HA Sier. Assessing intensive urban land use based on remote sensing images and industry survey data[J]. Remote Sensing for Natural Resources, 2023, 35(2): 149-156.
[11] HUA Yongchun, CHEN Jiahao, SUN Xiaotian, PEI Zhiyong. Analysis of landscape ecology risk of the Yellow River basin in Inner Mongolia[J]. Remote Sensing for Natural Resources, 2023, 35(2): 220-229.
[12] SHI Shushu, DOU Yinyin, CHEN Yongqiang, KUANG Wenhui. Remote sensing monitoring based analysis of the spatio-temporal changing characteristics of regional urban expansion and urban land cover in China’s coastal zones[J]. Remote Sensing for Natural Resources, 2022, 34(4): 76-86.
[13] LIU Chunlin, XIA Jianxin. Dynamic simulation of land use based on the LSTM-CA model[J]. Remote Sensing for Natural Resources, 2022, 34(4): 122-128.
[14] YANG Lianwei, ZHAO Juan, ZHU Jiatian, LIU Lei, ZHANG Ping. Spatial-temporal change and prediction of carbon stock in the ecosystem of Xi’an based on PLUS and InVEST models[J]. Remote Sensing for Natural Resources, 2022, 34(4): 175-182.
[15] LI Bo, LIN Wenpeng, LI Lubing. SDG15-oriented analysis on the spatiotemporal dynamics of ecosystem services in Qianjiangyuan National Park[J]. Remote Sensing for Natural Resources, 2022, 34(4): 243-253.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-2
Copyright © 2017 Remote Sensing for Natural Resources
Support by Beijing Magtech